
	
Mar%n	Norling	

Uppsala,	November	15th	2016	

Sequencing	recap	

•  This	lecture	is	focused	on	illumina,	but	the	
techniques	are	the	same	for	all	short-read	
sequencers.	

•  Short	reads	are	(generally)	high	quality	and	
highly	cost	efficient.	

Why	is	it	hard	to	assemble	genomes?	

Good	quality	assembly	demands:	
•  High	quality	samples	
•  Well	prepared	sequencing	libraries	
•  Good	sequencing	runs	
•  Sequence	aware	processing	and	assembly	
•  Correct	result	interpreta%on	

What	do	we	need?	

Assembly	strategies	

Most	people	can	come	up	with	some	strategy	to	
assemble	reads	into	sequences,	but	coming	up	
with	an	effec%ve	and	efficient	strategy	is	
difficult.	
We	will	look	at	two	of	the	most	common	
strategies:	
•  Overlap,	Layout,	Consensus	(commonly	OLC)	
•  De	Bruijn	Graph	based	(some%mes	DBG)	

Random	Reads	

ACAGTGGCTGGGCGGATGACCCGACCTCTATGTCGTTGCCCGGCCCCTATCGAAGGCGAGTCATGAAGATGCACACGTTGTGTCCCACTACTGAACCCTC

 CAGTGGCTGGG GATGACCCGAC TCTATGTCGTT CCCGGCCCCTA GAAGGCGAGTC TGAAGATGCAC GTTGTGTCCCA TACTGAACCCT
 CAGTGGCTGGG TGACCCGACCT TATGTCGTTGC CGGCCCCTATC AAGGCGAGTCA GAAGATGCACA TTGTGTCCCAC ACTGAACCCTC
 TGGCTGGGCGG CGACCTCTATG GTTGCCCGGCC TATCGAAGGCG GTCATGAAGAT CACACGTTGTG CCACTACTGAA

 GGCTGGGCGGA CGACCTCTATG TGCCCGGCCCC ATCGAAGGCGA TCATGAAGATG TGTGTCCCACT
 GGCTGGGCGGA GACCTCTATGT TGCCCGGCCCC ATCGAAGGCGA CATGAAGATGC TGTGTCCCACT
 GGCTGGGCGGA GACCTCTATGT TGCCCGGCCCC TCGAAGGCGAG CATGAAGATGC TGTCCCACTAC
 GGCTGGGCGGA ACCTCTATGTC GCCCGGCCCCT GAAGGCGAGTC GAAGATGCACA TCCCACTACTG
 GCTGGGCGGAT ACCTCTATGTC GCCCGGCCCCT AGGCGAGTCAT AAGATGCACAC TCCCACTACTG
 GGCGGATGACC ACCTCTATGTC GCCCGGCCCCT GCGAGTCATGA ATGCACACGTT TCCCACTACTG

 GCGGATGACCC ACCTCTATGTC CCCGGCCCCTA AGTCATGAAGA GCACACGTTGT CCACTACTGAA
 CGGATGACCCG CTCTATGTCGT CCCGGCCCCTA ATGAAGATGCA ACTACTGAACC
 ACCTCTATGTC CCGGCCCCTAT GAAGATGCACA ACTACTGAACC
 CTCTATGTCGT GGCCCCTATCG AAGATGCACAC CTACTGAACCC
 CTCTATGTCGT GCCCCTATCGA AGATGCACACG CTACTGAACCC

 CTCTATGTCGT CCCCTATCGAA AGATGCACACG CTACTGAACCC
 TCTATGTCGTT CCCCTATCGAA CACACGTTGTG ACTGAACCCTC
 TCTATGTCGTT CCCCTATCGAA ACTGAACCCTC
 CTATGTCGTTG CCTATCGAAGG
 CTATGTCGTTG

 CTATGTCGTTG
 ATGTCGTTGCC
 TGTCGTTGCCC
 GTCGTTGCCCG

Graphs!	

To	get	a	long	sequence	out	of	short	sequences	
they’re	piled	up	into	a	graph.	
	
A	graph	is	basically	a		
set	of	nodes	(in	our		
case	sequence	reads)	
connected	by	edges.		
	
	
	
	
	
	

Node	

Node	

Node	Node	

Node	

Directed,	cyclic	graph	with	5	nodes	
(ver%ces)	and	5	edges	

Overlap	Layout	Consensus	(OLC)	

This	is	the	“naive”	way	of	doing	assembly,	but	
also	a	very	good	way	of	doing	assembly	if	the	
data	allows	it!	
	
Algorithm	has	three	stages:	
1.   Overlap	–	Find	overlaps	between	reads	
2.   Layout	–	Collapse	overlap	graph	into	con7gs	
3.   Consensus	–	Find	consensus	sequence	for	

each	con%g	
	
	

Overlap	

The	basic	idea	is	to	find	all	overlaps	between	all	
reads,	and	crea%ng	a	graph.	This	opera%on	is	
extremely	costly.	
There	are	op%miza%ons:	
•  Suffix	trees	
•  Indexes	
But	OLC	is	s%ll	always	computa%onally	
expensive.	

Layout	

The	graph	from	find	all	read	overlaps	can	be	
extremely	complex,	so	first	the	graph	is	reduced.	
There	are	different	ways	of	doing	this	but	
commonly:	
•  Edges	are	removed	if	they	can	be	inferred	
from	other	edges	

•  Edges	with	low	support	are	assumed	to	be	
sequencing	errors	and	removed.	

Consensus	

The	final	part	is	quite	straight	forward;	try	to	
find	the	most	likely	base	for	each	posi%on	based	
on	the	graph.	

OLC	

Pros:	U%lizes	long	reads	well	–	fewer,	longer	
reads	are	less	expensive	to	overlap,	and	OLC	can	
make	use	of	the	en%re	long	reads.	
Cons:	Time	consuming	and	requires	large	
amounts	of	memory.	

De	Bruijn	Graph	based	assembly	

De	Bruijn	graph	construc%on	

Sequence	Assembly	via	De	Bruijn	Graphs	

From	Mar%n	&	Wang,	Nat.	Rev.	Genet.	2011	

From	Mar%n	&	Wang,	Nat.	Rev.	Genet.	2011	

From	Mar%n	&	Wang,	Nat.	Rev.	Genet.	2011	

De	Bruijn	

•  Pros:	Computa%onally	efficient,	can	work	with	large	coverage	
short	read	datasets	

•  Cons:	Sensi%ve	to	sequence	errors,	connec%on	between	
assembly	and	read	is	lost,	does	not	work	so	well	with	longer	
reads	

Assemblathon	2	

•  Uses	454,	Illumina,	and	PacBio	for	three	large	eukaryote	
genomes:	a	bird,	a	fish,	and	a	snake	

•  Bird	-	Illumina	14	libraries,	454,	PacBio	
•  Fish	-	Illumina,	8	libraries	
•  Snake	-	Illumina,	4	libraries	
•  Teams	take	the	data,	perform	assemblies	with	whatever	tools	

they	wish,	and	then	submit	their	results	=>	teams	are	
evaluated	more	than	individual	programs!	

GigaScience	2013,	2:10	

Assemblathon	2	

Assemblathon	2	-	Bird	vs.	Snake	

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0 10 20 30 40 50 60 70 80 90 100

S
ca

ff
ol

d
N

G
(X

) l
en

gt
h

NG(X) %

SGA

ALLP

SOAP

ABL

PHUS

BCM

RAY

MLK

MERAC

NEWB

CBCB

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0 10 20 30 40 50 60 70 80 90 100
S

ca
ff

ol
d

N
G

(X
) l

en
gt

h
NG(X) %

CRACS

SOAP

BCM

RAY

CURT

GAM

PHUS

MERAC

SGA

SYMB

ABYSS

Assemblathon	2	recommenda%ons	

•  Based	on	the	findings	of	Assemblathon	2,	we	make	a	few	broad	sugges%ons	to	
someone	looking	to	perform	a	de	novo	assembly	of	a	large	eukaryo%c	genome:	

•  1.	Don’t	trust	the	results	of	a	single	assembly.	If	possible,	generate	several	
assemblies	(with	different	assemblers	and/or	different	assembler	parameters).	
Some	of	the	best	assemblies	entered	for	Assemblathon	2	were	the	evalua%on	
assemblies	rather	than	the	compe%%on	entries.	

•  2.	Do	not	place	too	much	faith	in	a	single	metric.	It	is	unlikely	that	we	would	have	
considered	SGA	to	have	produced	the	highest	ranked	snake	assembly	if	we	had	
only	considered	a	single	metric.	

•  3.	Poten%ally	choose	an	assembler	that	excels	in	the	area	you	are	interested	in	
(e.g.,	coverage,	con%nuity,	or	number	of	error	free	bases).	

•  4.	If	you	are	interested	in	genera%ng	a	genome	assembly	for	the	purpose	of	genic	
analysis	(e.g.,	training	a	gene	finder,	studying	codon	usage	bias,	looking	for	intron-
specific	mo%fs),	then	it	may	not	be	necessary	to	be	concerned	by	low	N50/NG50	
values	or	by	a	small	assembly	size.	

•  5.	Assess	the	levels	of	heterozygosity	in	your	target	genome	before	you	assemble	
(or	sequence)	it	and	set	your	expecta%ons	accordingly.	

Some	Assembly	Problems	

There	are	way	more	assembly	programs	than	
algorithms,	so	if	they	use	the	same	algorithm,	
why	do	they	produce	different	results?	
There	are	of	course	tons	of	tweaks	and	
heuris%cs	that	make	assemblers	differ	quite	a	lot	
from	each	other.	
Here	are	some	examples	of	common	assemblers	
and	how	they	work!	

Programs	

ABySS	

ABySS	–	“Assembly	By	Short	Sequences”	–	is	a	
rela%vely	basic	de	bruijn	graph	based	assembler,	
with	a	strong	focus	on	paralleliza%on.		
The	assembler	has	two	steps;	(1)	de	Bruijn	graph	
con%g	contruc%on	and	(2)	con%g	joining	with	
paired-end/mate-pair	informa%on.	
Errors	are	handled	by	itera%ve	removal	of	short	
“dead-end”	branches	and	removal	of	small	
bubbles.	

AllPaths-LG	

ALLPATHS-LG	(Large	Genome)	is	a	de	Bruijn	
assembler	specially	tuned	for	handling	large	
genomes,	and	as	such	it	requires	at	least	one	
mate-pair	library	and	one	paired-end	library	for	
assembly.	
AllPaths	does	error	correc%on	on	reads	based	
on	kmer	abundances,	is	highly	memory	efficient	
to	allow	large	assemblies,	and	adap%ve	to	beler	
handle	low	coverage	regions.	

MaSuRCA	

MaSuRCA	uses	de	Bruijn	graphs	to	create	unique	
extensions	of	all	reads	into	what	they	call	super	
reads.	These	reads	are	then	assembled	by	OLC,	
as	the	super	read	construc%on	(ideally)	creates	a	
data	set	of	hundredfold	fewer,	longer	reads	
than	the	original	data.	

SOAPdenovo2	

SOAPdenovo2	uses	“sparse”	de	Bruijn	graphs	by	
using	a	method	similar	to	the	super	reads	from	
MaSuRCA,	as	well	as	mul%ple	kmer	sizes	in	
order	to	allow	faster	and	more	memory	efficient	
graph	construc%on.	
Uses	paired/mate-pair	informa%on	in	a	second	
step	to	join	and	scaffold	con%gs.	

SPAdes	

SPAdes	uses	another	de	Bruijn	graph	variant.	It	
creates	a	mul7sized	de	Bruijn	graph	using	
several	kmer	sizes.	This	graph	is	then	directly	
manipulated	using	paired	informa%on	into	a	
paired	assembly	graph.	This	graph	is	then	
collapsed	into	con%gs.	
	

…	and	MANY	more	
Name	 Algorithm	 Data	

Abyss	 De	Bruijn	 Illumina	

Allpaths-lg	 De	Bruijn	 Illumina/PacBio	

CABOG	(Celera)	 OLC	 All	

Falcon	 OLC	 PacBio	

HGAP	 OLC	 PacBio	

Masurca	 De	Bruijn/OLC	 All	

Mira	 “OLC”	 All	

Newbler	 OLC	 454/Illumina/Torrent	

SGA	 String	 Illumina	

SoapDeNovo	 De	Bruijn	 Illumina	

Spades	 De	Bruijn	 Illumina	(PacBio)	

In	short	–	there	is	endless	ways	to	implement	these	algorithms	

A	first	look	at	assemblies:	QUAST	

•  QUAST, 	Quality	Assessment	
	 	Tool	for	Genome	
	 	Assemblies	

	
Produces	a	basic	report	of	
common	sta%s%cs,	such	as	
N50,	number	of	con%gs,	etc.	

Con%g	graphs	

Nx	graphs	

Now	let’s	get	assembling!

