
PacBio Assembly 

1 



Outline 

•  The Error Profile of PacBio reads 
•  Methods of read correction 

–  Correction with Illumina reads 
–  Correction using PacBio reads 

•  Assembly Tools 
•  Assembly Diagnostics 
•  Assembly Polishing 

2 



PacBio GC Bias 

3 Shi et al. 2016. Nature Communications. 



PacBio Error Profile 

4 Koren et al. 2012. Nature Biotechnology. 



PacBio Error Profile 

5 
T. Seemann. 2015: slideshare.net: Long read sequencing 



PacBio Error Profile 

•  Some statistics from sequencing the 16S rRNA gene. 
–  Reads of Insert (>3 passes) - average sequence error rate of 0.65% 
–  Insertions, deletions, and substitutions accounted for 31.2, 17.9, and 

50.9% of those errors, respectively. 
–  Substitution errors were equally likely 
–  All four bases were equally likely to be insertion errors 
–  G (39.4%) and A (24.3%) were more likely to be deleted than C 

(18.3%) or T (18.0%) 
–  Percentage of base calls that had max quality did not vary among 

correct base calls (80.5%), substitutions (80.0%), or insertions 
(80.4%) 

•  Quality values cannot be used to screen sequence quality 

•  Nearly random errors. 

6 Schloss et al. 2016: PeerJ. 



Read Correction 

•  Correction using Illumina reads 

•  Homopolymer correction, point 
mutations, and indels 

•  Doesn’t correct structural errors 

•  Tools 
–  PBcR / PacBioToCA 
–  LSC / LSCplus 
–  LoRDEC (de Bruijn graph) 
–  Proovread 
–  ECTools 
–  Jabba (de Bruijn graph) 

7 Koren et al. 2012. Nature Biotechnology. 



Read Correction 

G. Myers. 2015. Dazzlerblog.wordpress.com. Intrinsic Quality Values 

•  Structural errors 
–  Chimeric reads ( see Tallon et al. 2014. BMC Genomics) 
–  Missed or incorrectly inferred adapter 
–  Interference from other molecules 
–  … 



Read Correction 

9 



Read Correction 

10 



Read Correction 

•  Use a weighted directed acyclic graph to find consensus sequence 

11 Chin et al. 2016. Nature Methods 



Read Assembly 

•  Popular PacBio assemblers: 
–  HGAP 

•  Limited to genomes < 200MB 
•  http://www.pacb.com/support/software-downloads/ 

–  Canu 
•  Large genomes 
•  https://github.com/marbl/canu 

–  Falcon 
•  Large genomes 
•  https://github.com/PacificBiosciences/FALCON-integrate 

–  Miniasm 
•  Large genomes 
•  https://github.com/lh3/miniasm 

12 



HGAP 

13 Slides from PacBio: BFX_Workshop_Oct_2014_Final-lh.pdf 



HGAP 

14 



HGAP 

15 



HGAP 

16 



HGAP 

17 



HGAP 

18 



HGAP 

19 



HGAP 

20 



HGAP 

21 



HGAP 

22 



HGAP 

23 



HGAP 

24 



HGAP 

•  Running HGAP (Command line) 
–  Install SMRT Analysis software 
–  Make a HGAP assembly job using the SMRT portal and save. 
–  Save the settings.xml file as HGAP_protocol.xml 

25 



HGAP 

•  Running HGAP (Command line) cont’d. 
–  Modify Genome size in HGAP_protocol.xml 

•  <param name=“genomeSize” label=“Genome Size (bp)”> 
  <value>5000000</value> 

–  Source the SMRT analysis environment 
•  source /path/to/smrtanalysis/install/smrtanalysis_2.3.0.140936/

etc/setup.sh 
–  Add the full paths of your raw data (*.bax.h5) into an input.fofn 

•  find <data_dir> -name “*.bax.h5” > input.fofn 
–  Convert the input.fofn to an input.xml 

•  fofnToSmrtpipeInput.py input.fofn > input.xml 
–  Run SMRT pipe using the protocol and input xmls. 

•  smrtpipe.py --params=HGAP_protocol.xml xml:input.xml 
–  Results are found in index.html in the working directory 
–  Assembly is in data/polished_assembly.fastq.gz 

26 



HGAP 

#! /bin/bash
#SBATCH -A <your uppmax project>
#SBATCH -p core
#SBATCH -n 8
#SBATCH -t 1-00:00:00
#SBATCH -J run_smrt_assembly
#SBATCH -e run_smrt_assembly-%j.out
#SBATCH -o run_smrt_assembly-%j.out

module load bioinfo-tools SMRT/2.3.0
WORK_DIR=$SNIC_TMP/smrt_assembly_$(date +%Y_%m_%d-%H.%M)
PROJ_DIR=$PWD
PROTOCOL_XML=$PROJ_DIR/Settings/HGAP_protocol.xml
DATA_DIR=${PROJ_DIR}/00_RawData         # Use full path
GENOME_SIZE=5000000

# Modify Protocol xml to the correct genome size
perl -0777 -i.original -pe "s/<param name=\"genomeSize\" label=\"Genome Size \(bp\)\">\n\s+<value>\d
+<\/value>/<param name=\"genomeSize\" label=\"Genome Size (bp)\">\n\t\t<value>$GENOME_SIZE<\/value>/
igs" $PROTOCOL_XML

# Activate SMRT Analysis environment
source $SMRT_SETUP_SCRIPT 
mkdir -p $WORK_DIR; cd $WORK_DIR

# Make input file
find ${DATA_DIR} -name "*.bax.h5" > input.fofn
fofnToSmrtpipeInput.py input.fofn > input.xml

smrtpipe.py --params=$PROTOCOL_XML xml:input.xml

cd $PROJ_DIR; rsync -av $WORK_DIR .
27 



Canu 

28 
Koren et al. 2016. BioRxiv 



Canu 

•  Running Canu 
–  Can autodetect cluster settings (not recommended for milou) 
–  Run canu on a node 

•  useGrid=false 
•  maxThreads=$NPROCS 

canu -p <file_prefix> -d <out_dir> genomeSize=“18m” 
maxThreads=24 useGrid=false -pacbio-raw 
<filtered_subreads.fastq.gz>

•  Results 
–  Sequence is in file_prefix.contigs.fasta 
–  Assembly graph is in file_prefix.gfa 

29 



Falcon 

30 Chin et al. 2016. Nature Methods 



Falcon 

31 
Slides from Jason Chin:Diploid_Assembly_V1106_SpeakerDeck.pdf  



Falcon 

32 



Falcon 

33 



Falcon 

34 



Falcon 

35 



Falcon 

36 



Falcon 

37 



Falcon 

•  Running Falcon 
–  Make a configuration file 
–  Can use SGE queuing manager 
–  Run locally on a node 
–  Separate filtered subreads into separate fasta’s for each movie 

•  zcat *.fastq.gz | seqtk seq -l 5000 -A - | awk 
‘BEGIN { RS=“>”; FS=“/” } { print 
“>”substr($0,1,length($0)-1) > $1”.fasta” }‘

–  Make an input fofn 
•  /bin/ls -1 *.fasta > input.fofn

–  Run Falcon 
•  fc_run.py falcon.cfg

38 



Falcon 

•  Notes from the author 
–  Falcon is limited by file i/o capabilities 

•  Lustre file system recommended 
•  NFS can handle 3-5 concurrent jobs during pre-assembly 
•  Highly repetitive genomes require quadratically more storage 

space 
–  Falcon scales quadratically 

•  All-by-all comparison of raw subreads, with matches written to 
disk 

39 



Falcon 

•  The Falcon config file (parameter rich, rest is at end of presentation) 
[General]
jobtype = local             # other values sge, slurm
input_fofn = input.fofn
input_type = raw            # uncorrected reads
#input_type = preads        # falcon corrected reads

# The length cutoff used for seed reads used in initial 
mapping - these make the corrected reads
length_cutoff = 12000       # use longest 30X coverage

# The length cutoff used for seed reads used for pre-
assembly - the min length of corrected reads
length_cutoff_pr = 12000    # 0-5000 lower than above 

40 



Miniasm 

•  No error correction step 

•  Implements Overlap - Layout (but no consensus) 

# Overlap  
minimap/minimap -Sw5 -L100 -m0 -t8 reads.fq reads.fq | 
gzip -1 > reads.paf.gz  
 
# Layout  
miniasm/miniasm -f reads.fq reads.paf.gz > reads.gfa  
 
# Get fasta  
awk ‘/^S/{print “>”++seq”\n”$3}’ reads.gfa > reads.fasta

41 



Alternative PacBio Assemblers 

•  ABruijn 
–  Uncorrected overlap assembly of long read sequences followed by 

polishing 
–  https://github.com/fenderglass/ABruijn 

•  Ra 
–  Uncorrected overlap assembly of long read sequences 
–  https://github.com/mariokostelac/ra-integrate 

•  ARacon 
–  Combination of GraphMap + Miniasm + Racon 
–  https://github.com/isovic/aracon 

•  Hinge 
–  Read filtering (but no correction) followed by overlap assembly of long 

read sequences 
–  https://github.com/fxia22/HINGE 

•  SMARTdenovo 
–  Uncorrected overlap assembly of long read sequences 
–  https://github.com/ruanjue/smartdenovo 

42 



Preliminary Assembly Diagnostics 

•  Assembly Size 
–  Assemblathon Script (https://github.com/KorfLab/Assemblathon) 
–  Quast 

43 

          Number of scaffolds        556
      Total size of scaffolds   31318563
             Longest scaffold     447934
            Shortest scaffold       8580
  Number of scaffolds > 1K nt        556 100.0%
 Number of scaffolds > 10K nt        555  99.8%
Number of scaffolds > 100K nt         38   6.8%
  Number of scaffolds > 1M nt          0   0.0%
 Number of scaffolds > 10M nt          0   0.0%
           Mean scaffold size      56328
         Median scaffold size      43995
          N50 scaffold length      60037
           L50 scaffold count        152 



Preliminary Assembly Diagnostics 

•  Corrected Read Coverage 
–  What happened in the correction process 
–  High coverage? Use the ~100X longest subreads 

44 

--   Found 87386 reads.
--   Found 1654383605 bases (45.95 times coverage).
--
--   Read length histogram (one '*' equals 265.11 reads):
--        0    999      0 
--     1000   1999      0 
--     2000   2999      0 
--     3000   3999      0 
--     4000   4999      0 
--     5000   5999      0 
--     6000   6999      0 
--     7000   7999      0 
--     8000   8999      0 
--     9000   9999      0 
--    10000  10999      0 
--    11000  11999      0 
--    12000  12999      0 
--    13000  13999      0 
--    14000  14999      0 
--    15000  15999  18558 **********************************************************************
--    16000  16999  15099 ********************************************************
--    17000  17999  11974 *********************************************
--    18000  18999   9486 ***********************************
--    19000  19999   7344 ***************************
--    20000  20999   5652 *********************
--    21000  21999   4328 ****************
--    22000  22999   3516 *************
--    23000  23999   2725 **********
--    24000  24999   2057 *******
--    25000  25999   1672 ******
--    26000  26999   1243 ****
--    27000  27999    920 ***
--    28000  28999    735 **
--    29000  29999    541 **
--    30000  30999    414 *
--    31000  31999    324 *



Preliminary Assembly Diagnostics 

•  Falcon: DBstats 1-preads_ovl/preads.db  
–  Focus on % Bases column (multiply by read coverage to find cutoff). 

Statistics for all wells of length 500 bases or more

         12,915 reads        out of          13,124  ( 98.4%)
    116,202,931 base pairs   out of     116,263,784  ( 99.9%)

          8,997 average read length
          6,983 standard deviation

  Base composition: 0.249(A) 0.239(C) 0.258(G) 0.255(T)

  Distribution of Read Lengths (Bin size = 1,000)

        Bin:      Count  % Reads  % Bases     Average
     42,000:          1      0.0      0.0       42279
     41,000:          2      0.0      0.1       41631
...  
(more bin values)  
...  
      3,000:      1,065     75.5     95.0       11317
      2,000:      1,328     85.8     97.9       10259
      1,000:      1,444     97.0     99.7        9251
          0:        387    100.0    100.0        8997 

45 



Preliminary Assembly Diagnostics 

•  Falcon: Overlap statistics 
–  cd 1-preads_ovl/ ;  
fc_ovlp_stats --fofn merge-gather/las.fofn > 
ovlp_stats.txt

46 

$ R  
> data <- read.table(“ovlp_stats.txt”)  
> hist(data$V3,xlab=“5’ overlap”)
> hist(data$V4,xlab=“3’ overlap”)



Preliminary Assembly Diagnostics 

•  Falcon: Overlap statistics 

47 

$ R
> library(MASS)
> data <- read.table(“ovlp_stats.txt”)
> plot(data$V3,data$v4)
> z <- kde2d(data$V3,data$v4)
> contour(z,add=TRUE) 



Preliminary Assembly Diagnostics 

•  Assembly Graph 
–  Check connectedness of contigs 

•  Is longer range information needed? 
– Higher quality sequence material 
–  BioNano 
– Chicago / Dovetail 

48 



Polishing assemblies 

•  Draft assemblies still contain many InDel and base substitution errors.  
–  Correction using Quiver / Arrow and PacBio reads 

49 



Polishing assemblies 

•  In the SMRT portal select a protocol that includes the following modules 
–  P_Filter 
–  P_Mapping 
–  P_GenomicConsensus 

•  RS_Resequencing 
•  RS_BridgeMapper 

–  P_BridgeMapper 

•  To run via SMRT pipe 
–  Copy the settings.xml of the dummy job 
–  Make the draft assembly a reference using ReferenceUploader 
–  Change reference value in settings.xml 
–  Run 

50 



Polishing assemblies 

•  Bridge Mapper results opened with SMRTview 

51 



Polishing assemblies 

•  Assembly Polishing 
–  Can also be performed using Pilon and Illumina reads 

52 
Walker et al. 2014. PLOS One 



Polishing assemblies 

•  Polishing with Pilon 
–  Make an BAM file with your favourite aligner, e.g. BWA. 
–  Check ploidy settings 

 
java -d64 -Xmx2T -jar pilon-1.16.jar  
  --genome unpolished_assembly.fasta  
  --frags alignment.bam  
  --output polished_assembly  
  --vcf --changes --tracks --diploid --threads 48

53 



Summary 

•  PacBio sequencing is very dependent on sample DNA quality 
•  The longest reads are targeted for correction 
•  Correction with Illumina only does part of the read correction job 
•  Check basic stats 
•  Select your best assemblies 
•  Polish 
•  Assess correctness. 

54 



Falcon 

•  The Falcon config file 
[General]
jobtype = local             # other values sge, slurm
input_fofn = input.fofn
input_type = raw            # uncorrected reads
#input_type = preads        # falcon corrected reads

# The length cutoff used for seed reads used in initial 
mapping - these make the corrected reads
length_cutoff = 12000       # use longest 30X coverage

# The length cutoff used for seed reads used for pre-
assembly - the min length of corrected reads
length_cutoff_pr = 12000    # 0-5000 lower than above 

55 



Falcon 

•  The Falcon config file cont’d. 
# concurrency settings  
pa_concurrent_jobs = 32      # pre-assembly  
ovlp_concurrent_jobs = 32    # overlap  
cns_concurrent_jobs = 32     # consensus  

# overlapping options for Daligner  
pa_HPCdaligner_option = -dal4 -t16 -e.70 -l1000 -s1000  
ovlp_HPCdaligner_option = -dal4 -t32 -h60 -e.96 -l500 -
s1000  
 
# -B <int>, -dal <int>  
# blocks to compare => higher = less but longer jobs  
 
# -e <int>   # average correlation rate (def 70%) 

56 



Falcon 

•  The Falcon config file cont’d. 
# -v                        # turns on verbose  
 
# -l <int>  
# the length in base pairs of the minimum local 
alignment (def. 1000)  
 
# -s <int>  
# how frequently trace alignments measured in bases are 
recorded (def. 100)  
 
# -b  
# daligner assumes the data has a strong compositional 
bias (e.g. >65% AT rich). 

57 



Falcon 

•  The falcon config file cont’d. 
# -t <int>,-M <int>       # Limits the effects of repeats  

# Invariably, some k-mers are significantly over-
represented (e.g. homopolymer runs). These k-mers create an 
excessive number of matching k-mer pairs and left 
unaddressed would cause daligner to overflow the available 
physical memory.  One way to deal with this is to 
explicitly set the -t parameter which suppresses the use of 
any k-mer that occurs more than t times in either the 
subject or target block.  However, a better way to handle 
the situation is to let the program automatically select a 
value of t that meets a given memory usage limit specified 
(in Gb) by the -M parameter.  By default daligner will use 
the amount of physical memory as the choice for -M.  If you 
want to use less, say only 8Gb on a 24Gb HPC cluster node 
because you want to run 3 daligner jobs on the node, then 
specify -M8.  Specifying -M0 basically indicates that you 
do not want daligner to self adjust k-mer suppression to 
fit within a given amount of memory.

58 



Falcon 

•  The falcon config file cont’d. 
# -H <int>  
# By default daligner compares all overlaps between 
reads in the database that are greater than the minimum 
cutoff set when the DB or DBs were split, typically 1 or 
2 Kbp.  However, the HGAP assembly pipeline only wants 
to correct large reads, say 8Kbp or over, and so needs 
only the overlaps where the a-read is one of the large 
reads.  By setting the -H parameter to say N, one alters 
daligner so that it only reports overlaps where the a-
read is over N base-pairs long.  
 
# Essentially limits making alignments of reads of any 
size only to reads longer than <int>

59 



Falcon 

•  The Falcon config file cont’d. 
# -k <int>, -h <int>, -w <int> 
# The options -k, -h, and -w control the initial 
filtration search for possible matches between reads.  
Specifically, the daligner search code looks for a pair 
of diagonal bands of width 2^w (default 2^6 = 64) that 
contain a collection of exact matching k-mers (default 
14) between the two reads, such that the total number of 
bases covered by the k-mer hits is h (default 35). k 
cannot be larger than 32 in the current implementation.

60 



Falcon 

•  The Falcon config file cont’d. 
# How the database is split up for making comparison 
blocks
pa_DBspliAt_option = -x1000 -s50 -a
ovlp_DBsplit_option = -x1000 -s50 -a

# -x <int>  
# Ignore reads lower than length  
 
# -s <int>  
# specifies number of mb in each DB chunk - larger 
numbers makes smaller numbers of longer jobs (should be 
400 mb or so for large genomes)  
 
# -a       # ignore secondary reads from the same well

61 



Falcon 

•  The Falcon config file cont’d. 
# error correction consensus option  
falcon_sense_option = --output_multi --min_idt 0.70 --
min_cov 4 --local_match_count_threshold 2 --max_n_read 
200 --n_core 6

# --min_cov <int>  
# break/trim seed read lower than <int>  
 
# --max_n_read <int>  
# max reads used for error correction - reduce value for 
highly repetitive genomes

62 



Falcon 

•  The Falcon config file cont’d. 
# overlap filtering options  
overlap_filtering_setting = --max_diff 100 --max_cov 100 
--min_cov 20 --bestn 10  
 
# --bestn <int>  
# Use the <int> best overlaps to simplify transitive 
edges in the graph  
 
# --max_cov <int>, --min_cov <int>  
# filter overlaps that are too high or too low (e.g. 
reads ending in repeats, or many sequencing errors)  
 
# --max_diff <int>  
# Max difference of coverage between 5’ and 3’ ends

63 


