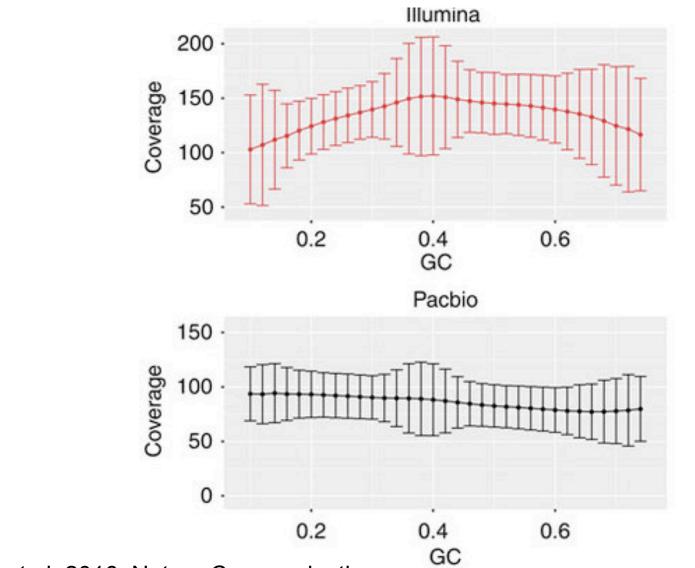
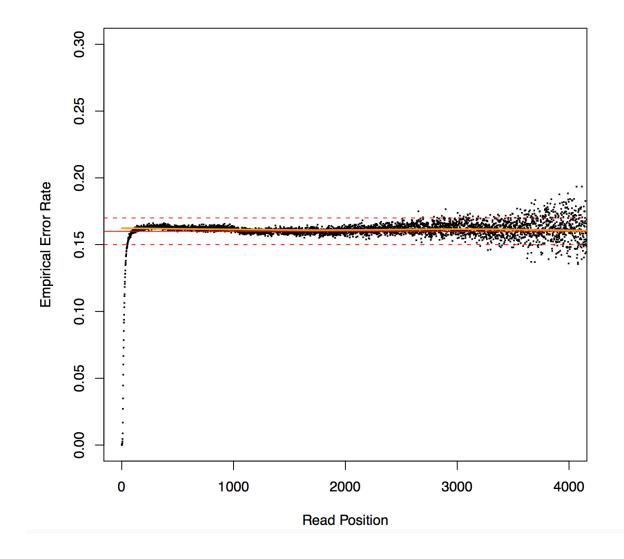


PacBio Assembly


Outline

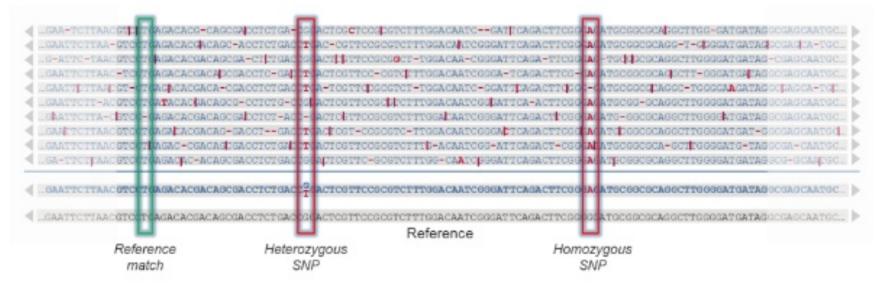
- The Error Profile of PacBio reads
- Methods of read correction
 - Correction with Illumina reads
 - Correction using PacBio reads
- Assembly Tools
- Assembly Diagnostics
- Assembly Polishing


PacBio GC Bias

Shi et al. 2016. Nature Communications.

PacBio Error Profile

Koren et al. 2012. Nature Biotechnology.


Lab

SciL

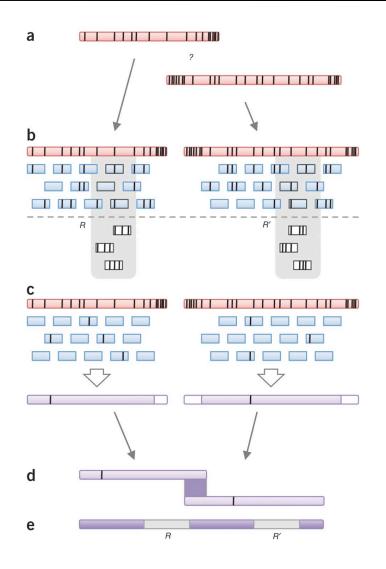
PacBio Error Profile

SciLifeLab

PacBio: error rate

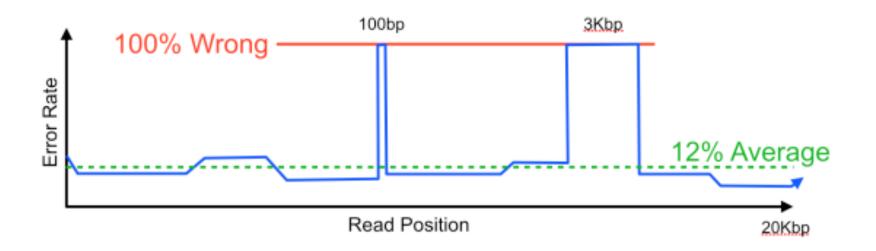
Single read: 86%

30x Consensus: 99.999%

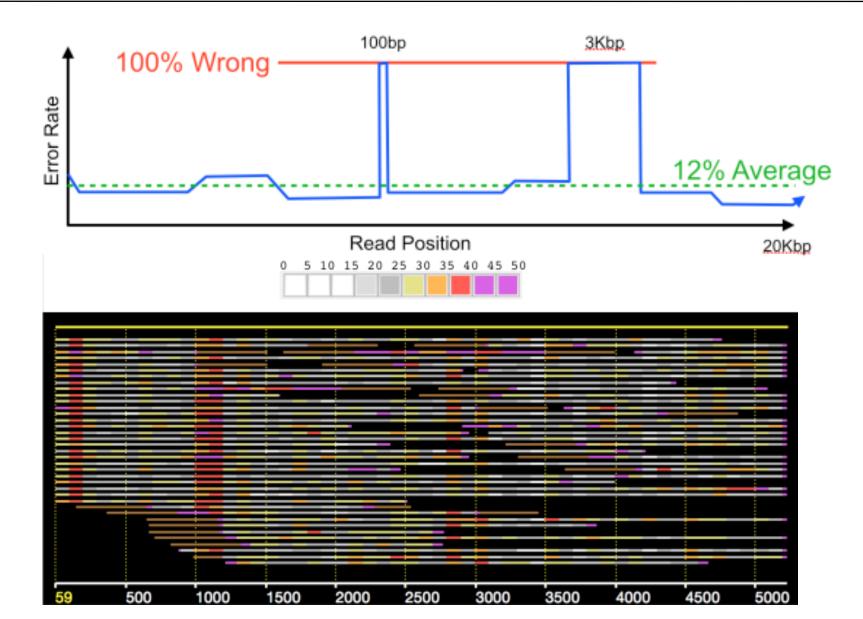

PacBio Error Profile

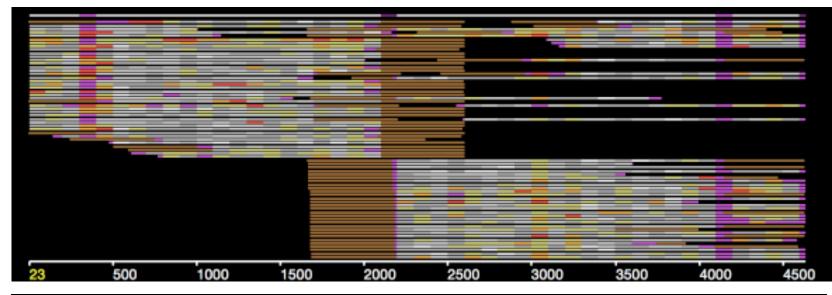
- Some statistics from sequencing the 16S rRNA gene.
 - Reads of Insert (>3 passes) average sequence error rate of 0.65%
 - Insertions, deletions, and substitutions accounted for 31.2, 17.9, and 50.9% of those errors, respectively.
 - Substitution errors were equally likely
 - All four bases were equally likely to be insertion errors
 - G (39.4%) and A (24.3%) were more likely to be deleted than C (18.3%) or T (18.0%)
 - Percentage of base calls that had max quality did not vary among correct base calls (80.5%), substitutions (80.0%), or insertions (80.4%)
 - Quality values cannot be used to screen sequence quality
- Nearly random errors.

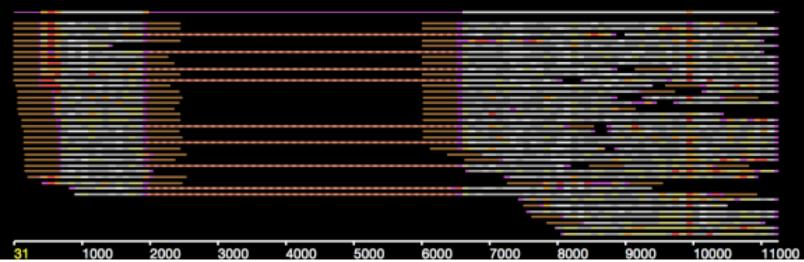
Schloss et al. 2016: PeerJ.

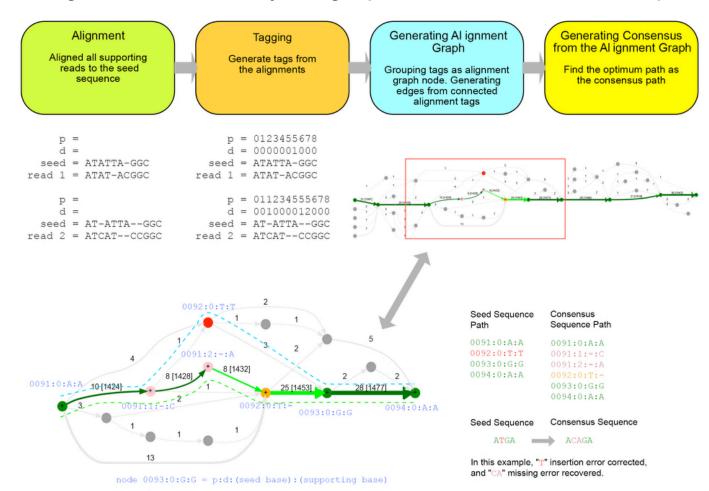


- Correction using Illumina reads
- Homopolymer correction, point mutations, and indels
- Doesn't correct structural errors
- Tools
 - PBcR / PacBioToCA
 - LSC / LSCplus
 - LoRDEC (de Bruijn graph)
 - Proovread
 - ECTools
 - Jabba (de Bruijn graph)


Koren et al. 2012. Nature Biotechnology.


- Structural errors
 - Chimeric reads (see Tallon et al. 2014. BMC Genomics)
 - Missed or incorrectly inferred adapter
 - Interference from other molecules

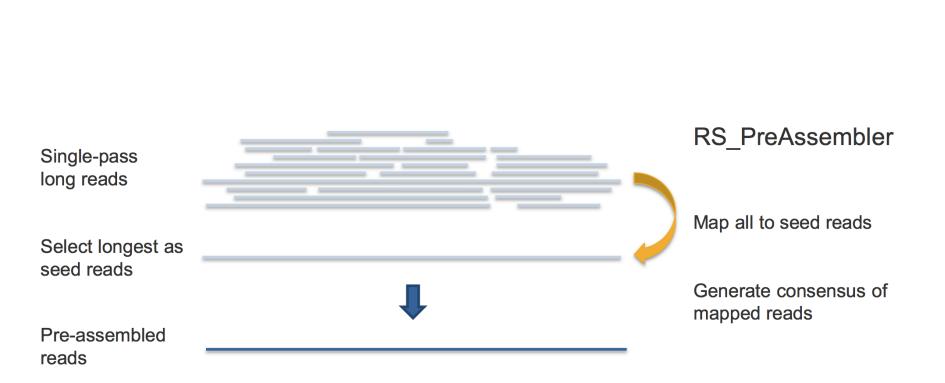




• Use a weighted directed acyclic graph to find consensus sequence

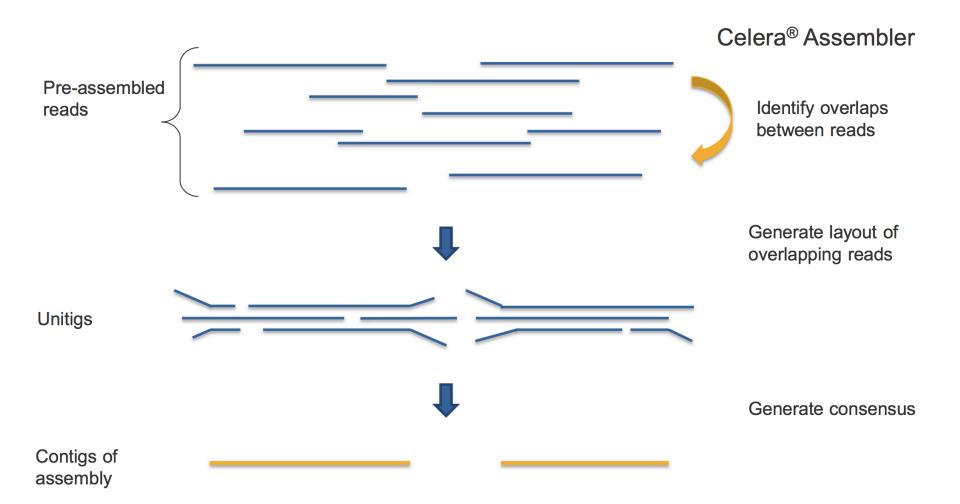
Supplementary Figure 12

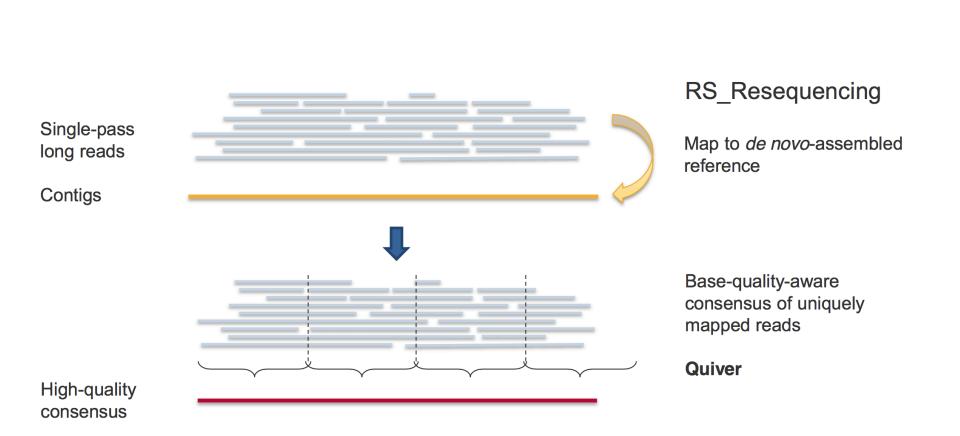
An Example of how the FALCON-sense algorithm generates consensus sequence.


Chin et al. 2016. Nature Methods

Sci

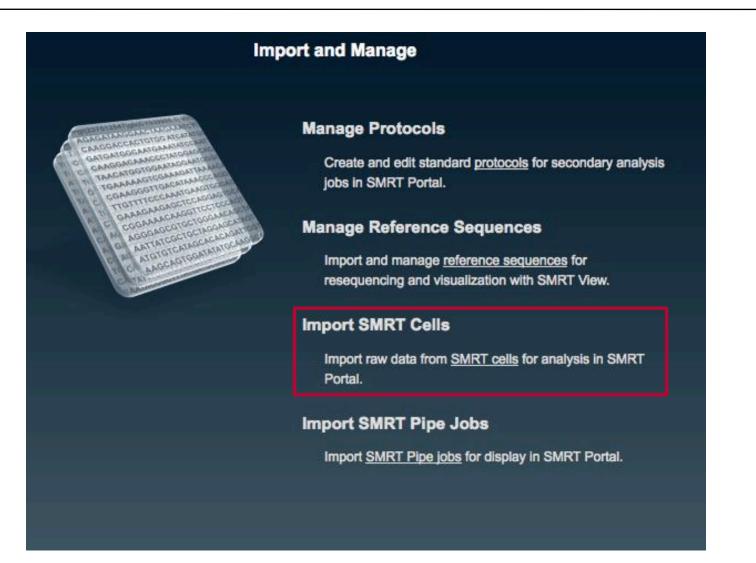
Read Assembly


- Popular PacBio assemblers:
 - HGAP
 - Limited to genomes < 200MB
 - http://www.pacb.com/support/software-downloads/
 - Canu
 - Large genomes
 - https://github.com/marbl/canu
 - Falcon
 - Large genomes
 - <u>https://github.com/PacificBiosciences/FALCON-integrate</u>
 - Miniasm
 - Large genomes
 - <u>https://github.com/lh3/miniasm</u>

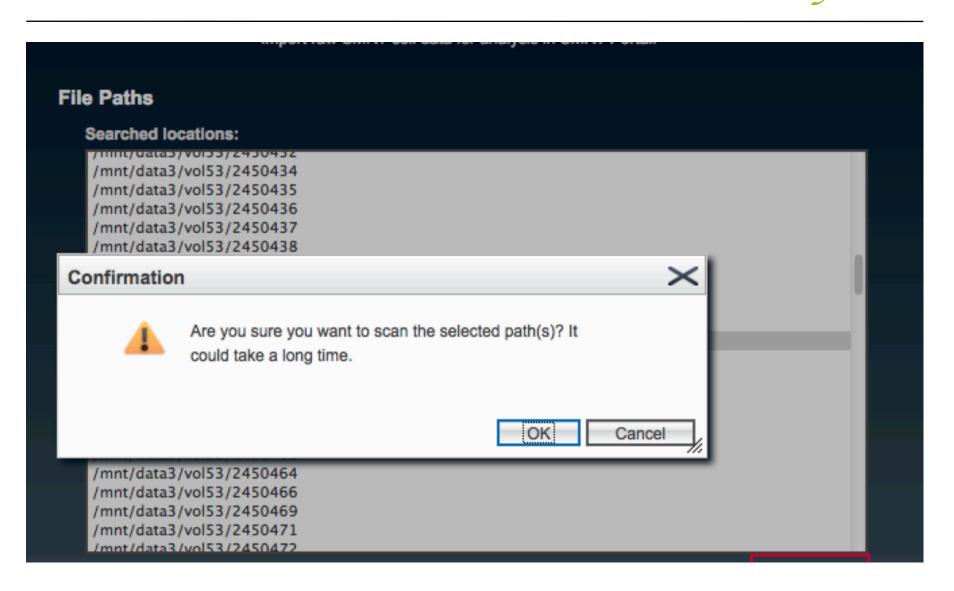


Scil

Lab


SciLi

Lab


DESIGN JOB		MONITOR JOBS			VIEW DATA		
				GAAA	CONTRACTORS DE LA CONTRACTORS		
Open Existing]	Create New		Import and	d Manage		
		RECENT JOBS					
Job Name ugmExampleA_reseq	Protocol RS_Resequencing.1	Reference Sequence	Started	Status Completed	User kluong		
NHGRI10_4cells_tandemArt	HGAP_Assembly_Artifact.1			Completed	kluong		

Import SMRT Cells	
Import raw SMRT cell data for analysis in SMRT Portal.	
File Paths	
Searched locations: //mnt/data3/vol53/2450432 /mnt/data3/vol53/2450435 /mnt/data3/vol53/2450435 /mnt/data3/vol53/2450436 /mnt/data3/vol53/2450437	
Enter A Folder Containing SMRT Cell Data	
/mnt/data3/vol53/2450462 /mnt/data3/vol53/2450464 /mnt/data3/vol53/2450466 /mnt/data3/vol53/2450469 /mnt/data3/vol53/2450471 /mnt/data3/vol53/2450472 Add Remove	Scan

DESIGN JOB		MONITOR JOBS			VIEW DATA		
				GAAAGA	CONTOCAC		
Open Existing		Create New		Import and	d Manage		
		RECENT JOBS					
Job Name ugmExampleA_reseq	Protocol RS_Resequencing.1	Reference Sequence	Started	Status Completed	User		
NHGRI10_4cells_tander		uginexampleA		Completed	kluong		

SciLi	feL ab

SMRT® Portal Home Tech	Support Files Help	About			Welcor	me, nsisneros! Ac	count Log Off
DESIGN JO	В	MONITOR JOBS			VIE	W DATA	
Job Name	Comment		Group	all		User	
Protocols	<u> </u>	Reference [None selected]	_				
SMRT Cells Available (Viewing 1 -	28 of 28)	🖗 Analysis		records to view)			
Sample	Uri			Vei User	Groups	Started	Uri
Seabury-11-20-091114	/mnt/data3/vol53/fas/da	Which type(s) of analysis would you like to perform on your					
Seabury-11-20-091114	/mnt/data3/vol53/fas/da	sequencing data?					
Seabury-11-20-091114	/mnt/data3/vol53/fas/da	✓ Reference-based					
Seabury-11-20-091114	/mnt/data3/vol53/fas/da	Analyze PacBio sequence data and compare to a known reference					
Laxiflora-090314	/mnt/data3/vol60/24202	sequence. (This Includes tasks such as resequencing, cDNA Q/C and					
Laxiflora-090314	/mnt/data3/vol60/24202	mapping, minor variant detection, and base modification analysis.)					
Laxiflora-081914	/mnt/data3/vol60/24202	De novo assembly					
Laxiflora-090314	/mnt/data3/vol60/24202	Assemble a genome from PacBio data, perform phasing on long					
Laxiflora-081914	/mnt/data3/vol60/24202	amplicons such as the HLA region.					
Laxiflora-081914	/mnt/data3/vol60/24202	🗹 Data Prep					
K.Laxiflora-PP-08071408nM-1xMB	/mnt/data3/vol60/24202	Prepare PacBio sequencing data for analysis. This includes filtering					
Laxiflora-090314	/mnt/data3/vol60/24202	data.					
K.Laxiflora-PP-08071408nM-1xMB	/mnt/data3/vol60/24202	utu.					
K.Laxiflora-PP-08071408nM.5xMB	/mnt/data3/vol60/24202						
K.Laxiflora-PP-08071408nM-1xMB	/mnt/data3/vol60/24202	✓ Display all types of analysis					
Laxiflora-081914	/mnt/data3/vol60/24202	Show all available analysis types, including custom protocols. (A					
Laxiflora-081914	/mnt/data3/vol60/24202	protocol is a set of software algorithms that performs analysis on your					
K.Laxiflora-PP-08071408nM.5xMB	/mnt/data3/vol60/24202	input sequencing data.)					
K.Laxiflora-PP-08071408nM-1xMB	/mnt/data3/vol60/24202						
Laxiflora-081914	/mnt/data3/vol60/24202	Don't show this again ONEX	α;				
Laxiflora-090314	/mnt/data3/vol60/24202	98/0044	_				
Laxiflora-090314	/mnt/data3/vol60/24202	98/0046					
K.Laxiflora-PP-08071408nM.5xMB	/mnt/data3/vol60/24202	98/0055					
			_	_	_		
Show/Hide Columns Group Rows Expo	rt Table Data					Сору	Cancel

SMRT [®] Portal Home Tech S	upport Files	Help About						Welco	me, nsisneros!	Account Log Off
DESIGN JOE	3			MONITOR J	OBS		-	VIE	W DATA	
Job Name BFX course							2 2 11			
Job Name Bra Course	Co	mments					Groups all		User	
[None selected] Protocols FMR1_Resequencing.1 JH Barcode Consensus.1	·	Refe	ence [None selecte	d]						
SMRT C NoControl_Resequencing.1 RS_AHA_Scaffolding.1		Search	Seabury	Go Advanced		SMRT Cells in Job	(No records to view)			
Sample RS_BridgeMapper.1				User		Sample	Ve User	Groups	Started	Uri
Seabury 11 RS_HGAP_Assembly.2	_	B/fas/data perm/i	nputs_dropbox/D06_3							
Seabury 11 RS IcoSog 1			nputs_dropbox/D06_2							
Seabury-11 RS_Long_Amplicon_Analysis.1		3/fas/data_perm/i	nputs_dropbox/D06_4							
Seabury-11 RS_Minor_Variant.1 RS_Modification_Detection.1		B/fas/data_perm/i	nputs_dropbox/D06_1							
Laxiflora-09 RS_Modification_and_Motif_An	alysis.1	0/2420298/0045								
Laxiflora-0g RS_PreAssembler.2		0/2420298/0048								
Laxiflora-08 RS_ReadsOfInsert.1 RS_ReadsOfInsert_Mapping.1		0/2420298/0063								
Laxiflora-09 RS_Resequencing.1		0/2420298/0042								
Laxiflora-08 RS Resequencing Barcode.1		0/2420298/0057								
Laxiflora-08 RS_Site_Acceptance_Test.1 RS_Subreads.1		0/2420298/0059								
K.Laxiflora- plasmidbell_Resequencing.1		0/2420298/0052								
Laxiflora-090314	/mnt/data3/vol8	0/2420298/0043								
K.Laxiflora-PP-08071408nM-1xMB		60/2420298/0051								
K.Laxiflora-PP-08071408nM.5xMB		60/2420298/0054								
K.Laxiflora-PP-08071408nM-1xMB		60/2420298/0049								
Laxiflora-081914		50/2420298/0064								
Laxiflora-081914		50/2420298/0061								
K.Laxiflora-PP-08071408nM.5xMB		50/2420298/0056								
K.Laxiflora-PP-08071408nM-1xMB		50/2420298/0050								
Laxiflora-081914		50/2420298/0062								
Laxiflora-090314 Laxiflora-090314		50/2420298/0044								
K.Laxiflora-PP-08071408nM.5xMB		50/2420298/0046 50/2420298/0055								
R.LaxIII018-PP-000714001WI.3XIVIB	minudatao/vole	012420290/0000		1						
	_						_	_	_	
Show/Hide Columns Group Rows Export	Table Data						Start	Save	Сору	Cancel

SMRT® Portal Home Tech Sup	port Files Help About		Welcome, nsisneros! Account Log Off
DESIGN JOB		MONITOR JOBS	VIEW DATA
Job Name BFX course	Comments		Groups all User
Protocols	Protocol Details For Jo		
	Iri Filtering	PreAssembler v2 Compute Minimum Seed Read Length	Minimum Seed Read Length:
Seabury-11-20-091114	nnt/d Control Filtering nnt/d Assembly	Minimum Seed Read Length* 6000 Number Of Seed Read Chunks 6	- 30X Coverage of longest Seed
Seabury-11-20-091114	nnt/d Mapping	Alignment Candidates Per Chunk 10 Total Alignment Candidates 24	 Reads automatically calculated Uncheck to override "auto"
Laxiflora-081914	nnt/d Consensus nnt/d nnt/d	Minimum Coverage For Correction 6	
Laxiflora-081914	nnt/d nnt/d	BLASR Options (Advanced) -noSplitSubreads -minReadLengt AssembleUnitig v1	
Laxiflora-090314	nnt/d nnt/d nnt/d	Genome Size (Bp)* 5000000 Target Coverage 25	
K.Laxiflora-PP-08071408nM.5xMB	nnt/d nnt/d	Overlapper Error Rate 0.06	
Laxiflora-081914	nnt/d nnt/d	Overlapper Min Length 40 Overlapper K-mer 14	Key Parameter to set: Genome Size - 130 MB limit in SMRT Portal 2.3
K.Laxiflora-PP-08071408nM-1xMB	nnt/d nnt/d nnt/d	Pre-defined Spec File	
Laxiflora-090314	nnt/d nnt/d	OK Apply	Cancel
K.Laxiflora-PP-08071408nM.5xMB	nnt/dat aอางอเอย/2420256/005 5		Start Save Copy Cancel

DESIGN JOB	5	M	ONITOR JOBS		VIEW DATA
Name BFX_Workshop_Ecoli_HGAP.3	Comments			Groups all	User [rhall
otocol RS_HGAP_Assembly.3	¢ ··· Reference	[None selected]	• 🖉	Completed	View L
REPORTS	SMRT Cells: 1 Movies: 1				🖴 Print 🔹 Tech Support Files 🗠 Ema
GENERAL	Job Metric	Value	Adapters	Subread Filtering	Mapping
Overview	Polished Contigs	1	8	****	NO
Filtering Subread Filtering	Calapter Dimere (2 100p)	0.01%			
DIAGNOSTIC	Short Inserts (11-100bp)	0.0%	1° 10 10		
Adapters	Number of Bases	503,112,125	£		
Loading	Number of Reads	59,211			
RESEQUENCING	N50 Read Length	12,848		The set were set and set set and	170 ET EI EI EI
Mapping	Mean Read Length	8,496	Observed Insert Length	Subread Filtering	Mapped Subread Concordance
Coverage	Mean Read Score	0.84	Distribution Histogram		
ASSEMBLY Pre-Assembly	Mapped Reads	56,207			
Polished Assembly	Mapped Read Length of Insert	7,363	Mapping	Mapping	Coverage
DATA 🛛 🗶 SMRT View	Average Reference Length	4,669,315	Pr		*
	Average Reference Bases Called	100.0%	10	n 🔺	- Kikele a ola selende ask
GENERAL	Average Reference Consensus	99.98%	ер , ер		KAUKAN MAKANAN MAKANAN
SMRT Cells in Job Reads H5 FASTA	Concordance	33.30 %		j.	
Filtering CSV	Average Reference Coverage	94.12			
Filtered Subreads CSV FASTA			RECO DECO NOCO RECO NOCO RECO NOCO	NOT DOD NOT THE NOT THE ACT	Terrera anno anno anno anno
FASTQ			Mapped Subread Length	Mapped Polymerase Read Length	Coverage Across Reference
ASSEMBLY					
Preassembled Reads FASTA FASTQ					
Polished Assembly FASTQ CSV			Coverage	Corrections	
FASTA			a		
RESEQUENCING Aligned Reads H5 BAI BAM SAM			- ul		

- Running HGAP (Command line)
 - Install SMRT Analysis software
 - Make a HGAP assembly job using the SMRT portal and save.
 - Save the settings.xml file as HGAP_protocol.xml
 - Every SMRT Portal job has the following structure. Example:

- o data is a directory that contains intermediate and final data files for the analysis job
- results is a directory that contains summary statistics and plots for the analysis job
- log is a directory that contains all log files for the analysis job
- workflow is a directory that contains all the executables for the analysis job
- o job.sh is an executable file used by SMRT Portal to run the smrtpipe.py analysis job
- input.xml is a .xml file containing a list of input bax.h5 files used to run the analysis job
- settings.xml is a .xml file containing the parameters needed to perform the analysis job

- Running HGAP (Command line) cont'd.
 - Modify Genome size in HGAP_protocol.xml
 - <param name="genomeSize" label="Genome Size (bp)"> <value>5000000</value>
 - Source the SMRT analysis environment
 - source /path/to/smrtanalysis/install/smrtanalysis_2.3.0.140936/ etc/setup.sh
 - Add the full paths of your raw data (*.bax.h5) into an input.fofn
 - find <data_dir> -name "*.bax.h5" > input.fofn
 - Convert the input.fofn to an input.xml
 - fofnToSmrtpipeInput.py input.fofn > input.xml
 - Run SMRT pipe using the protocol and input xmls.
 - smrtpipe.py --params=HGAP_protocol.xml xml:input.xml
 - Results are found in index.html in the working directory
 - Assembly is in data/polished_assembly.fastq.gz


```
#! /bin/bash
#SBATCH -A <your uppmax project>
#SBATCH -p core
#SBATCH -n 8
#SBATCH -t 1-00:00:00
#SBATCH -J run smrt assembly
#SBATCH -e run smrt assembly-%j.out
#SBATCH -o run smrt assembly-%j.out
module load bioinfo-tools SMRT/2.3.0
WORK DIR=$SNIC TMP/smrt assembly $(date +%Y %m %d-%H.%M)
PROJ DIR=$PWD
PROTOCOL XML=$PROJ DIR/Settings/HGAP protocol.xml
DATA DIR=${PROJ DIR}/00 RawData  # Use full path
GENOME SIZE=5000000
# Modify Protocol xml to the correct genome size
perl -0777 -i.original -pe "s/<param name=\"genomeSize\" label=\"Genome Size \(bp\)\">\n\s+<value>\d
+<\/value>/<param name=\"genomeSize\" label=\"Genome Size (bp)\">\n\t\t<value>$GENOME SIZE<\/value>/
igs" $PROTOCOL XML
# Activate SMRT Analysis environment
source $SMRT SETUP SCRIPT
mkdir -p $WORK DIR; cd $WORK DIR
# Make input file
find ${DATA DIR} -name "*.bax.h5" > input.fofn
fofnToSmrtpipeInput.py input.fofn > input.xml
smrtpipe.py --params=$PROTOCOL XML xml:input.xml
cd $PROJ DIR; rsync -av $WORK DIR .
                                                                                                    27
```

Canu

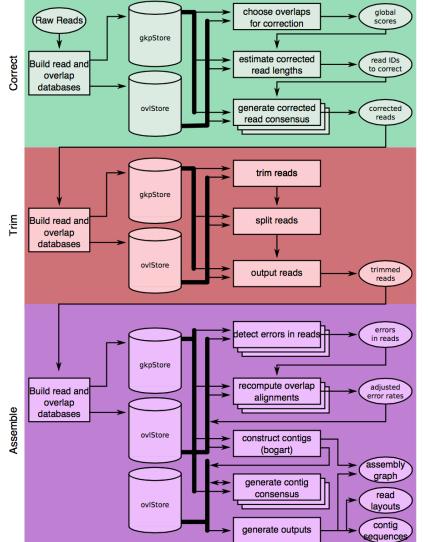
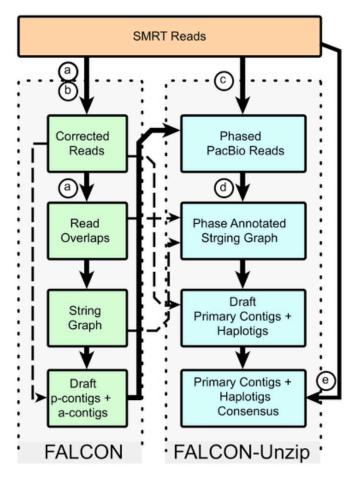


Figure 1. A full Canu run includes three stages: correction (green), trimming (red), and assembly (purple). Canu stages share an interface for binary on-disk stores (databases) as well as parallel store construction. In all stages, the first step constructs an indexed store of input sequences, generates a k-mer histogram, constructs an indexed store of all-vs-all overlaps, and collates summary statistics. The correction stage (green) selects the best overlaps to use for correction, estimates corrected read lengths, and generates corrected reads. The trimming stage (red) identifies unsupported regions in the input and trims or splits reads to their longest supported range. The assembly stage (purple) makes a final pass to identify sequencing errors; constructs the best overlap graph; and outputs contigs, an assembly graph, and summary statistics.

Koren et al. 2016. BioRxiv

Canu

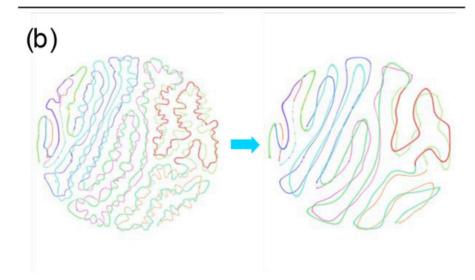

- Running Canu
 - Can autodetect cluster settings (not recommended for milou)
 - Run canu on a node
 - useGrid=false
 - maxThreads=\$NPROCS

```
canu -p <file_prefix> -d <out_dir> genomeSize="18m"
maxThreads=24 useGrid=false -pacbio-raw
<filtered_subreads.fastq.gz>
```

- Results
 - Sequence is in file_prefix.contigs.fasta
 - Assembly graph is in file_prefix.gfa

(a)

External code and internal modules used in FALCON and FALCON-Unzip



b Consensus Module (FALCON-sense)

C Phasing Module (FALCON-phasing)

Graph "Unzip" Module

BLASR Alignment+ Quiver Consensus Module

Chin et al. 2016. Nature Methods

Sci

e4

R2

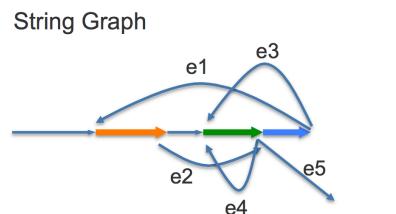
R2

e5

BIOINFORMATICS

Vol. 21 Suppl. 2 2005, pages ii79-ii85 doi:10.1093/bioinformatics/bti1114

R1


Genome

Genes and Genomes

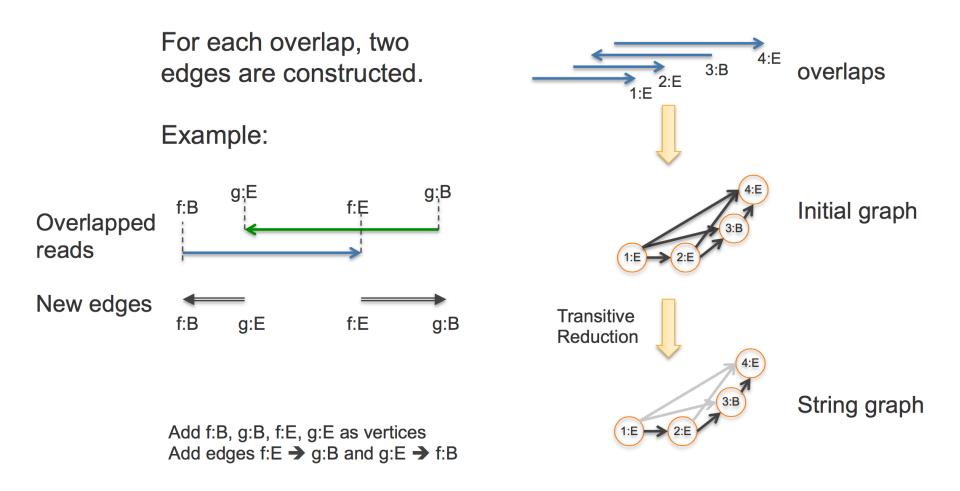
The fragment assembly string graph

Eugene W. Myers Department of Computer Science, University of California, Berkeley, CA, USA

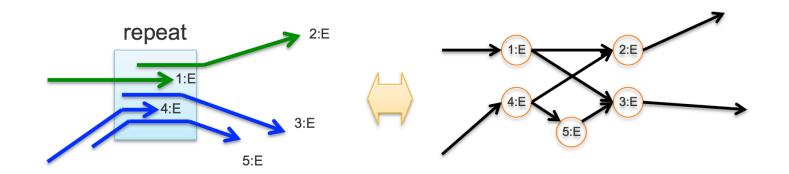
- String graph:
 - A graph structure that models a genome
- Nodes:
 - Particular positions (typically corresponding to the beginnings or endings of the read fragments) in the genome
- Edges:
 - The sequence between the vertices
- Any string from a path spell out a possible assembly from the reads

R1

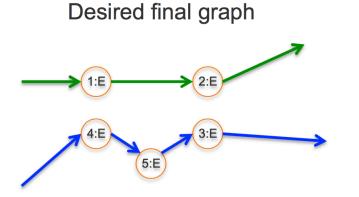
e1

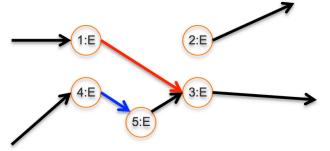

R2 R3

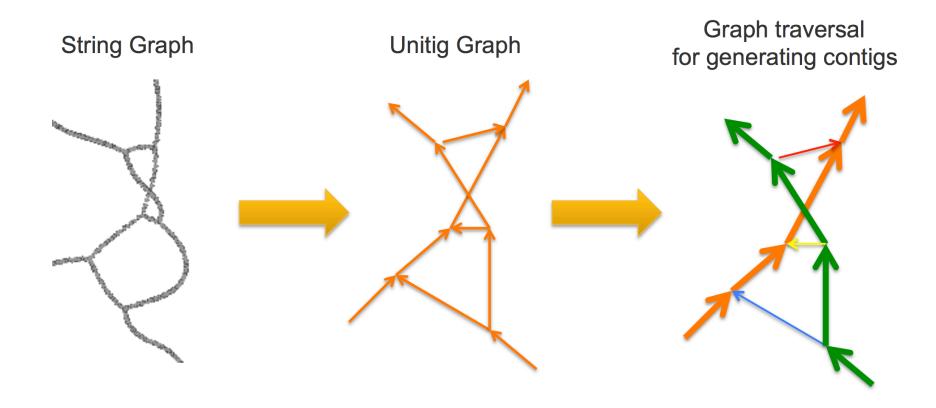
e2

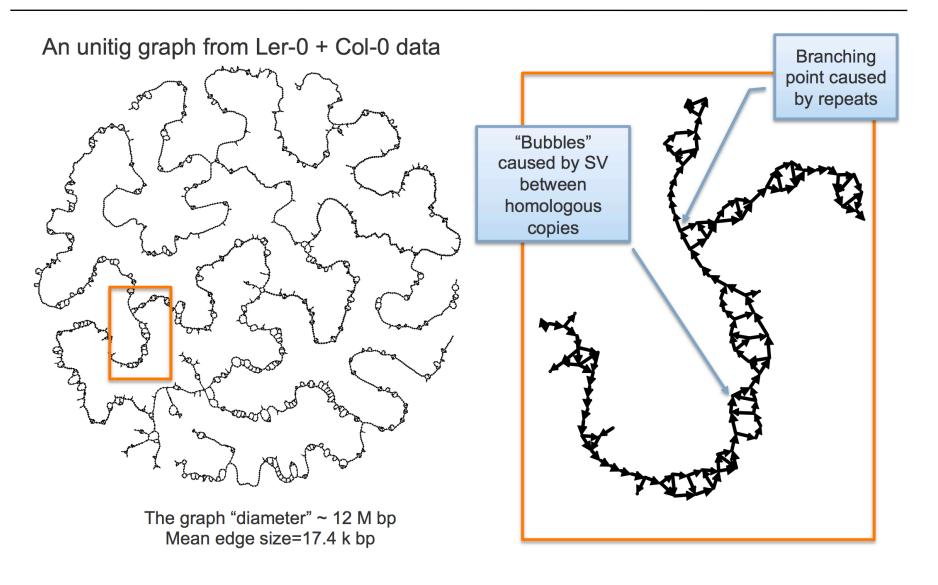

e3

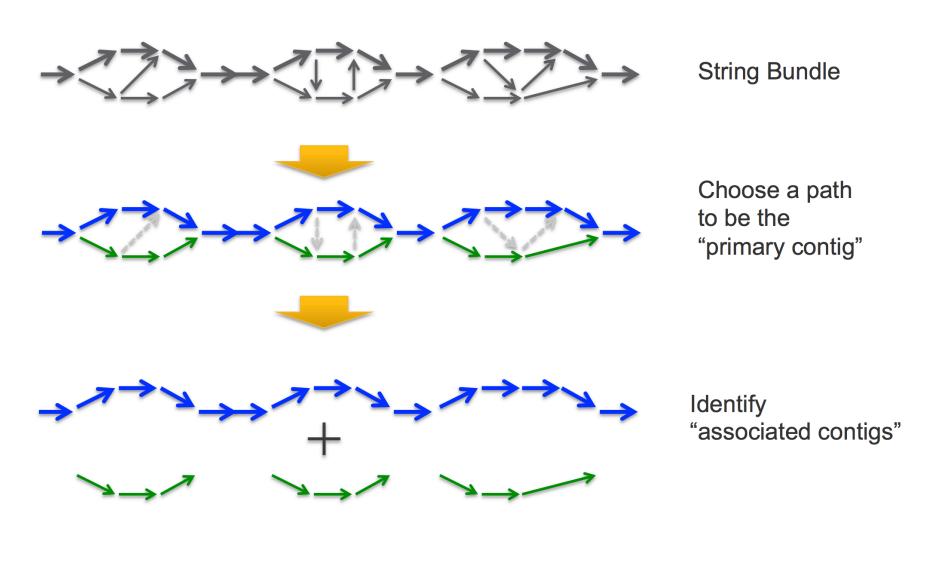
R3



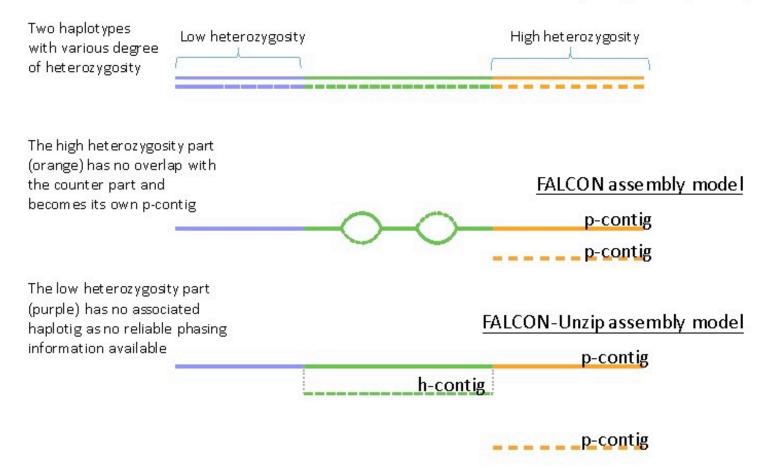



• Using a simple "best overlapping logic" to "untangle" the knots.




Best overlap string graph

The $4E \rightarrow 5E$ edge is better than $4E \rightarrow 2E$. The $1E \rightarrow 3E$ edge is better than $1E \rightarrow 2E$. ("wrong" edge)



Biological sequence

- Running Falcon
 - Make a configuration file
 - Can use SGE queuing manager
 - Run locally on a node
 - Separate filtered subreads into separate fasta's for each movie
 - Make an input fofn
 - /bin/ls -1 *.fasta > input.fofn
 - Run Falcon
 - fc_run.py falcon.cfg

- Notes from the author
 - Falcon is limited by file i/o capabilities
 - Lustre file system recommended
 - NFS can handle 3-5 concurrent jobs during pre-assembly
 - Highly repetitive genomes require quadratically more storage space
 - Falcon scales quadratically
 - All-by-all comparison of raw subreads, with matches written to disk

SciLifeLab

The Falcon config file (parameter rich, rest is at end of presentation)
 [General]
 jobtype = local # other values sge, slurm
 input_fofn = input.fofn
 input_type = raw # uncorrected reads
 #input_type = preads # falcon corrected reads

The length cutoff used for seed reads used in initial mapping - these make the corrected reads length_cutoff = 12000 # use longest 30X coverage

The length cutoff used for seed reads used for preassembly - the min length of corrected reads length_cutoff_pr = 12000 # 0-5000 lower than above

Miniasm

SciLifeLab

- No error correction step
- Implements Overlap Layout (but no consensus)

```
# Overlap
minimap/minimap -Sw5 -L100 -m0 -t8 reads.fq reads.fq |
gzip -1 > reads.paf.gz
```

```
# Layout
miniasm/miniasm -f reads.fq reads.paf.gz > reads.gfa
```

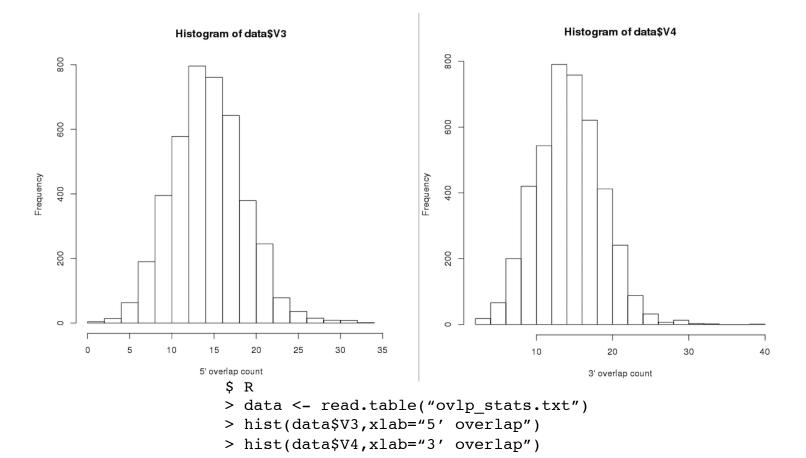
Get fasta
awk '/^S/{print ">"++seq"\n"\$3}' reads.gfa > reads.fasta

Alternative PacBio Assemblers

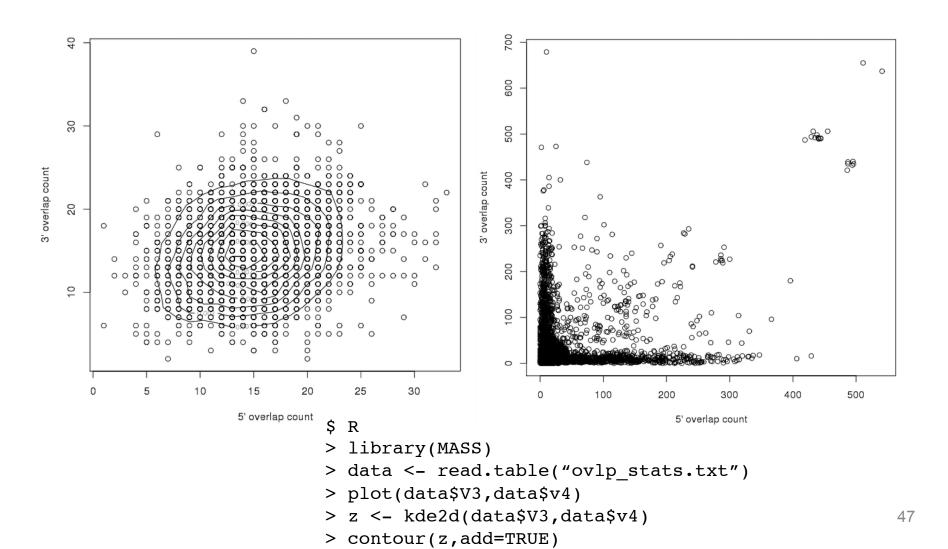
- ABruijn
 - Uncorrected overlap assembly of long read sequences followed by polishing
 - https://github.com/fenderglass/ABruijn
- Ra
 - Uncorrected overlap assembly of long read sequences
 - <u>https://github.com/mariokostelac/ra-integrate</u>
- ARacon
 - Combination of GraphMap + Miniasm + Racon
 - <u>https://github.com/isovic/aracon</u>
- Hinge
 - Read filtering (but no correction) followed by overlap assembly of long read sequences
 - <u>https://github.com/fxia22/HINGE</u>
- SMARTdenovo
 - Uncorrected overlap assembly of long read sequences
 - <u>https://github.com/ruanjue/smartdenovo</u>

- Assembly Size
 - Assemblathon Script (<u>https://github.com/KorfLab/Assemblathon</u>)
 - Quast

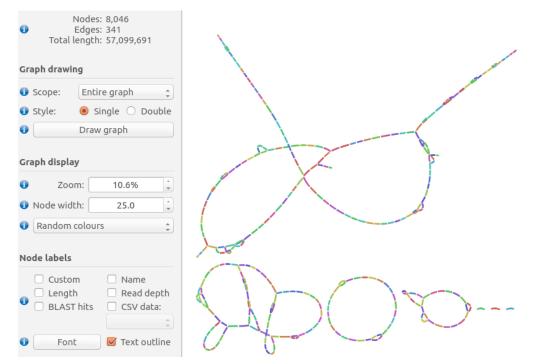
Number of scaffolds	556	
Total size of scaffolds	31318563	
Longest scaffold	447934	
Shortest scaffold	8580	
Number of scaffolds > 1K nt	556	100.0%
Number of scaffolds > 10K nt	555	99.8%
Number of scaffolds > 100K nt	38	6.8%
Number of scaffolds > 1M nt	0	0.0%
Number of scaffolds > 10M nt	0	0.0%
Mean scaffold size	56328	
Median scaffold size	43995	
N50 scaffold length	60037	
L50 scaffold count	152	


- Corrected Read Coverage
 - What happened in the correction process
 - High coverage? Use the ~100X longest subreads

```
Found 87386 reads.
--
    Found 1654383605 bases (45.95 times coverage).
___
    Read length histogram (one '*' equals 265.11 reads):
        0
            999
                    0
_ _
                    0
      1000
            1999
--
            2999
                    0
      2000
--
      3000
           3999
                    0
_ _
      4000
           4999
                    0
_ _
           5999
                    0
___
      5000
      6000
           6999
                    0
___
      7000
           7999
                    0
___
      8000
           8999
                    0
_ _
     9000
           9999
                    0
_ _
                    0
     10000
          10999
___
     11000
          11999
                    0
--
     12000
          12999
                    0
___
                    0
     13000
          13999
___
                    0
     14000
          14999
                 18558
                                                         15000
          15999
--
          16999
     16000
                 15099
                         --
                      17000
          17999
                 11974
--
     18000
          18999
                  9486
                      _ _
          19999
     19000
                  _ _
          20999
     20000
                  5652 *****************
--
     21000
          21999
                  4328 **************
___
                  3516 **********
     22000
          22999
___
     23000
          23999
                  2725 ********
_ _
     24000
          24999
                  2057 ******
_ _
     25000
          25999
                  1672 *****
___
     26000
          26999
                  1243 ****
--
     27000
          27999
                  920 ***
___
                   735 **
___
     28000
          28999
     29000
          29999
                   541 **
           30999
     30000
                   414 *
     31000
          31999
                   324 *
___
```

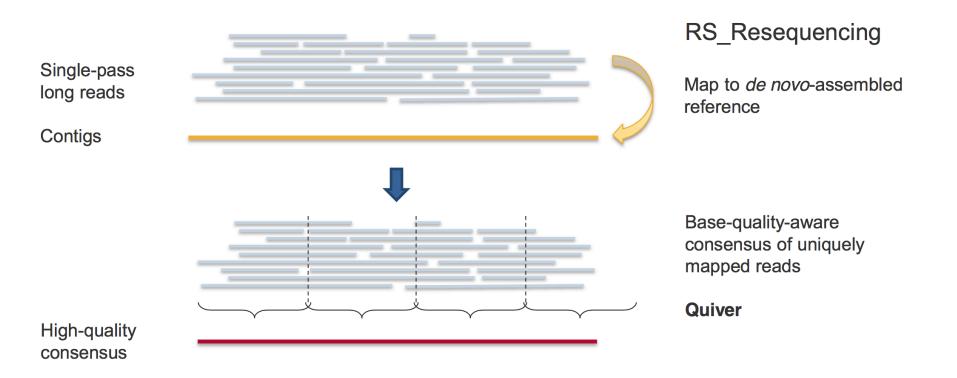


 Falcon: DBstats 1-preads_ovl/preads.db Focus on % Bases column (multiply by read coverage to find cutoff). 					
Statistics for a	all wells	of length	n 500 bases	s or more	
12,915 116,202,931			of of 116,		
8,997 average read length 6,983 standard deviation					
Base composition: 0.249(A) 0.239(C) 0.258(G) 0.255(T)					
Distribution of Read Lengths (Bin size = 1,000)					
Bin:	Count	% Reads	% Bases	Average	
42,000:	1	0.0	0.0	42279	
41,000:	2	0.0	0.1	41631	
 (more bin values)					
3,000:	1,065	75.5	95.0	11317	
•	-		97.9		
•	•		99.7		
-	387		100.0		

- Falcon: Overlap statistics
 - cd 1-preads_ovl/ ;
 fc_ovlp_stats --fofn merge-gather/las.fofn >
 ovlp_stats.txt


Sci

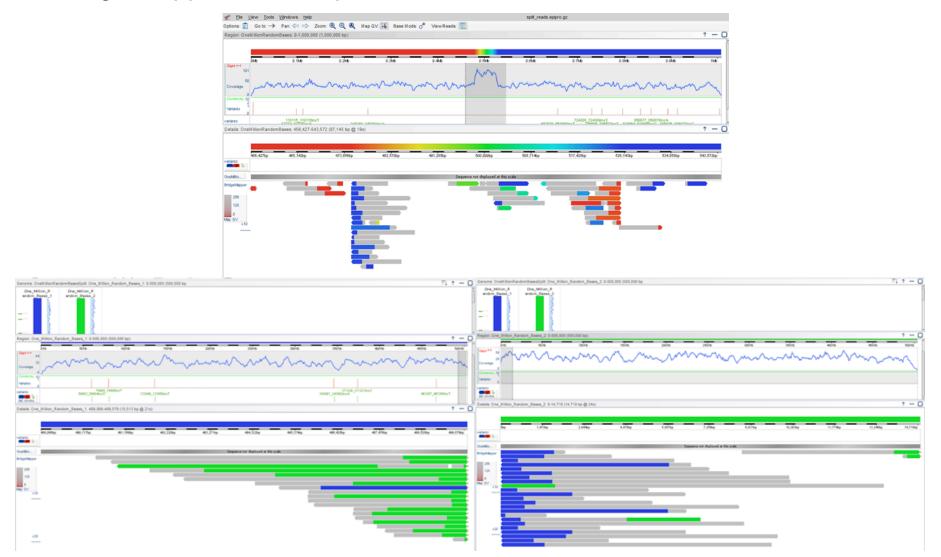
• Falcon: Overlap statistics

Sci


- Assembly Graph
 - Check connectedness of contigs
 - Is longer range information needed?
 - Higher quality sequence material
 - BioNano
 - Chicago / Dovetail

Sci

- Draft assemblies still contain many InDel and base substitution errors.
 - Correction using Quiver / Arrow and PacBio reads



- In the SMRT portal select a protocol that includes the following modules
 - P_Filter
 - P_Mapping
 - P_GenomicConsensus
 - RS_Resequencing
 - RS_BridgeMapper
 - P_BridgeMapper
- To run via SMRT pipe
 - Copy the settings.xml of the dummy job
 - Make the draft assembly a reference using ReferenceUploader
 - Change reference value in settings.xml
 - Run

• Bridge Mapper results opened with SMRTview

- Assembly Polishing
 - Can also be performed using Pilon and Illumina reads

PROCESS	RESULT	
Pilon protocol	Assembly improvement (Fasta)	Variation detection (VCF)
Evaluate alignment pileups TAATGGGGGCGGTGCCATATCATGAGA TAATGGGGGCGGTGCCATATCATGAGA TAATGGGGCCGGTGCCATATCTAGAGA TAATGGGGGCGGTGCCATATCATGAGA	Identify and fix base errors	Identify SNPs and small indels
Scan read coverage and alignment discrepancies	Identify potential local misassemblies	Identify larger insertions and deletions
Reassemble across gaps and discrepant regions	Attempt to fill gaps and fix local misassemblies	Attempt to build out the full sequence of larger insertions
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Walker et al. 2014. PLOS	One

- Polishing with Pilon
 - Make an BAM file with your favourite aligner, e.g. BWA.
 - Check ploidy settings

```
java -d64 -Xmx2T -jar pilon-1.16.jar
--genome unpolished_assembly.fasta
--frags alignment.bam
--output polished_assembly
--vcf --changes --tracks --diploid --threads 48
```

Summary

- PacBio sequencing is very dependent on sample DNA quality
- The longest reads are targeted for correction
- Correction with Illumina only does part of the read correction job
- Check basic stats
- Select your best assemblies
- Polish
- Assess correctness.

SciLifeLab

 The Falcon config file 	
[General]	
jobtype = local	<pre># other values sge, slurm</pre>
<pre>input_fofn = input.fofn</pre>	
input_type = raw	<pre># uncorrected reads</pre>
<pre>#input_type = preads</pre>	<pre># falcon corrected reads</pre>

The length cutoff used for seed reads used in initial mapping - these make the corrected reads length_cutoff = 12000 # use longest 30X coverage

The length cutoff used for seed reads used for preassembly - the min length of corrected reads length_cutoff_pr = 12000 # 0-5000 lower than above

SciLifeLab

The Falcon config file cont'd.
 # concurrency settings
 pa_concurrent_jobs = 32
 # pre-assembly
 ovlp_concurrent_jobs = 32
 # overlap
 cns_concurrent_jobs = 32

overlapping options for Daligner
pa_HPCdaligner_option = -dal4 -t16 -e.70 -l1000 -s1000
ovlp_HPCdaligner_option = -dal4 -t32 -h60 -e.96 -l500 s1000

-B <int>, -dal <int>
blocks to compare => higher = less but longer jobs

-e <int> # average correlation rate (def 70%)


```
• The Falcon config file cont'd.
# -v
                             # turns on verbose
# -1 <int>
# the length in base pairs of the minimum local
alignment (def. 1000)
\# -s <int>
# how frequently trace alignments measured in bases are
recorded (def. 100)
# -b
# daligner assumes the data has a strong compositional
bias (e.g. >65% AT rich).
```

SciLifeLab

The falcon config file cont'd.
 # -t <int>,-M <int> # Limits the effects of repeats

Invariably, some k-mers are significantly overrepresented (e.g. homopolymer runs). These k-mers create an excessive number of matching k-mer pairs and left unaddressed would cause daligner to overflow the available physical memory. One way to deal with this is to explicitly set the -t parameter which suppresses the use of any k-mer that occurs more than t times in either the subject or target block. However, a better way to handle the situation is to let the program automatically select a value of t that meets a given memory usage limit specified (in Gb) by the -M parameter. By default daligner will use the amount of physical memory as the choice for -M. If you want to use less, say only 8Gb on a 24Gb HPC cluster node because you want to run 3 daligner jobs on the node, then specify -M8. Specifying -M0 basically indicates that you do not want daligner to self adjust k-mer suppression to fit within a given amount of memory.

SciLifeLab

• The falcon config file cont'd.

```
# -H <int>
```

By default daligner compares all overlaps between reads in the database that are greater than the minimum cutoff set when the DB or DBs were split, typically 1 or 2 Kbp. However, the HGAP assembly pipeline only wants to correct large reads, say 8Kbp or over, and so needs only the overlaps where the a-read is one of the large reads. By setting the -H parameter to say N, one alters daligner so that it only reports overlaps where the aread is over N base-pairs long.

Essentially limits making alignments of reads of any size only to reads longer than <int>

SciLifeLab

- The Falcon config file cont'd.
- # -k <int>, -h <int>, -w <int>

The options -k, -h, and -w control the initial filtration search for possible matches between reads. Specifically, the daligner search code looks for a pair of diagonal bands of width 2^w (default 2⁶ = 64) that contain a collection of exact matching k-mers (default 14) between the two reads, such that the total number of bases covered by the k-mer hits is h (default 35). k cannot be larger than 32 in the current implementation.

• The Falcon config file cont'd.

How the database is split up for making comparison blocks

 $pa_DBspliAt_option = -x1000 - s50 - a$

```
ovlp_DBsplit_option = -x1000 - s50 - a
```

-x <int>
Ignore reads lower than length

-s <int>
specifies number of mb in each DB chunk - larger
numbers makes smaller numbers of longer jobs (should be
400 mb or so for large genomes)

-a # ignore secondary reads from the same well

• The Falcon config file cont'd.

```
# error correction consensus option
falcon_sense_option = --output_multi --min_idt 0.70 --
min_cov 4 --local_match_count_threshold 2 --max_n_read
200 --n_core 6
```

```
# --min_cov <int>
# break/trim seed read lower than <int>
```

```
# --max_n_read <int>
# max reads used for error correction - reduce value for
highly repetitive genomes
```


The Falcon config file cont'd.
 # overlap filtering options
 overlap_filtering_setting = --max_diff 100 --max_cov 100
 --min cov 20 --bestn 10

--bestn <int>
Use the <int> best overlaps to simplify transitive
edges in the graph

--max_cov <int>, --min_cov <int>
filter overlaps that are too high or too low (e.g.
reads ending in repeats, or many sequencing errors)

--max_diff <int>
Max difference of coverage between 5' and 3' ends