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Why study the transcriptome

The Central Dogma
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Why study the transcriptome

A more complex view
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Why study the transcriptome

Transcriptome data enables

Differential gene expression

Differential isoform usage, eg splicing patterns
Identification of co-expressed genes (gene networks)
Allele specific expression patterns

Detection of fusion genes
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Why study the transcriptome

Transcriptomes vs genomes

Dynamic, not the same over tissues and time points
Smaller sequence space
Less repetitive (but large gene families can be found)

Fairly stable in size? (eg. 2-4 fold change among eukaryotes,
whereas genome size can vary 1000-fold)

Genes are often expressed in multiple different splice-variants
RNA often from only one strand
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Why study the transcriptome

High level work flow overview

Experimental design (biology, medicine, statistics)
RNA extraction (biology, biotechnology)
Library preparation (biology, biotechnology)

High throughput sequencing (engineering, biology, chemistry,
biotechnology, bioinformatics)

Data processing (bioinformatics)
Data analysis (bioinformatics & biostatistics)
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RNA sequencing

Long read technologies

@ With long reads (eg Pacific Bioscience) full transcripts can be
directly sequenced

@ Since transcripts can be “directly” observed all isoforms can be
detected

o All current long read methods will give too little data (at
reasonable cost) to estimate expression levels

¥

Mainly used for de-novo assembly of transcriptomes or isoform
identification
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RNA sequencing
Short read technologies
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RNA sequencing

Stranded or not
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RNA sequencing

Basic quality control of raw reads

o FastQC

Quality scores across all bases (llumina LS encoding)

123456789 1213 1819 24-25 30-31 36-37 42-43 48-49 54-55 60-61 66-67 72-73 78-7%  B86-87 92-93 98-99
Position in read (bp!
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Basic quality control of raw reads

o FastQC
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RNA sequencing

Basic quality control of raw reads

@ RNA-seq is not random sample from the genome eg. GC content
might be different

o Highly expressed genes can be frequent and create warnings in
quality controls that assumes whole genome data

@ Random hexamer in cDNA synthesis might create ’biases’ in base
frequencies in the beginning of reads

A
Kwd 20160922 20/41



Two main routes for analysis

RNA-Seq reads
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Haas & Zody (2010), Nature Biotechnology 28, 421-423
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RNA-seq analysis Map based analysis

Aligning short reads from RNA to genomes

@ Large number of programs available: Star, HiSat, Subreadalign

etc
o Key feature compared to aligning DNA data: Allow for spliced

mapping
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RNA-seq analysis Map based analysis

Aligning short reads from RNA to genomes

o If available map to the genome sequence

@ If no genome sequence available map to transcriptome reference
@ Make use of available genome annotation (GTF, GFF, BED files)
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ScorestrandFrameAttributes

gene_id "LOC100288778"; gene_name "LOC100288778"; transcript_id
gene_id "LOC100288778"; gene_name "LOC100288778"; transcript_id
gene_id "LOC100288778"; gene_name "LOC100288778"; transcript_id
gene_id "LOC100288778"; gene_name "LOC100288778"; transcript_id
gene_id "LOC100288778"; gene_name "LOC100288778"; transcript_id
gene_id "L0C100288778"; gene_name "LOC100288778"; transcript_id
gene_id "LOC100288778"; gene_name "LOC100288778"; transcript_id
gene_id "FAM138D"; gene_name "FAM138D"; transcript_id "NR_026823'
gene_id "FAM138D"; gene_name "FAM138D"; transcript_id "NR_026823'
gene_id "FAM138D"; gene_name "FAM138D"; transcript_id "NR_026823

" tss_id "T5511862'

'NR_028269"; tss_id "TSS8200°
'NR_028269"; tss_id "TSS8200";
'NR_028260"; tss_id "TS58200";
NR_028269"; tss_id "TSS8200°

'NR_028269"; tss_id "TSS8200";
'NR_028260°"; tss_id "TSS8200°

NR_028269"; tes_id "TS582007;

tss_id "TSS11862";
 tss_id "TS511862";

gene_id "IQSEC3"; gene_name "IQSEC3"; p_id "P5442°; transcript_id "NM_001170738"; tss_id "TS517433";
gene_id "IQSEC3"; gene_name "IQSEC3"; p_id “P5442"; transcript_id “NM_001170738"; tss_id "TS517433";
gene_id "IQSEC3'; gene_name "IQSEC3"; p_id "P5442"; transcript_id "NM_001170738"; tss_id "TS517433";

gene_id "IQSEC3"; gene_name "IQSEC3"; p_id "P13619"; transcript_id

'NM_015232" ts5_id "TS512565";

gene_id "IQSEC3"; gene_name "IQSEC3'; p_id "P5442"; transcript_id "NM_001170738"; tss_id "TSS17433";

gene_id "IQSEC3'; gene_name "IQSEC3"; p_id "P13615"; transcript._id
gene_id "IQSEC3

NM_015232"; tss_id "T5512565";

gene_name "IQSEC3"; p_id "P5442"; transcript_id "NM_001170738"; tss_id "TS$17433";

gene_id "IQSEC3"; gene_name "IQSEC3"; p_id "P5442; transcript_id “NM_001170738"; tss_id "TS517433";
gene_id "IQSEC3"; gene_name "IQSEC3"; p_id "P5442'; transcript_id "NM_001170738"; tss_id "TS517433";
gene_id "LOCS74538"; gene_name "LOCS74538"; transcript_id "NR_033850°; tss_id "TSS17153;

gene_id "IQSEC3"; gene_name "IQSEC3"; p_id "P5442; transcript_id "NM_001170738"; tss._id "TS517433";

gene_id "IQSEC3"; gene_name "IQSEC3"; p_id "P13619"; transcript_id

NM_015232"; tss_id "TS512565";

gene_id "IQSEC3"; gene_name "IQSEC3"; p_id P5442"; transcript_id "NM_001170738"; tss_id "T5517433";

gene_id "IQSEC3'; gene_name "IQSEC3'; p_id "P13615"; transcript_id

NM_015232°; tss_id "15512565;

gene_id "IQSEC3'; gene_name "IQSEC3"; p_id "P13619"; transcript_id "NM_015232"; tss_id "T5512565";
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RNA-seq analysis Map based analysis

Star

@ Index the genome as an uncompressed suffix array
@ Map reads in a two step fashion:
@ Seed search that finds read or part of read that map without
mismatch to genome
@ Align complete reads by stitching seed mapping results using a
local alignment procedure

A
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QC of mapped reads

NB?S 20160922

Reads should mostly map to known genes

read_distribution.py

-i Pairend StrandSpecific_Slmer_Human_hgl9.bam -r hgl9.refseq.bedl2

Output:

Group Total_bases Tag_count Tags/Kb
CDS_Exons 33302033 20002271 600.63
S'UTR_Exons 21717577 4408991 203.01
3'UTR_Exons 15347845 3643326 237.38
Introns 1132597354 6325392 5.58
TSS_up_1kb 17957047 215331 11.99
_TSS_up_5kb 81621382 392296 4.81
TSS_up_10kb 149730983 769231 5.14
TES_down_1kb 18298543 266161 14.55
TES_down_5kb 78900674 729997 9.25
TES_down_10kb 140361190 896882 6.39

25/41



RNA-seq analysis Map based analysis

QC of mapped reads

Most splice event should be known and canonical (GU-AG)

splicing junctions splicing events

complete_novel 18%

complete_novel 7%

partial_novel 4% partial_novel 2%

known 90%
known 78%
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RNA-seq analysis Map based analysis

From counts to gene expression

Gene expression

Read count
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From counts to gene expression
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RNA-seq analysis Map based analysis

Not all reads are the same
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from: http://www-huber.embl.de/users/anders/HTSeg/doc/count.html
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RNA-seq analysis Map based analysis

Normalized expression Values

o Mapped read counts are normalized for both length of the
transcript they map to and total depth of sequencing.

@ Count data is hence converted to: Reads/Fragments per kb of
transcript length and million mapped reads (RPKM or FPKM)
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RNA-seq analysis

Experimental design

« Treatment

+ Biological replicate

* RNA extraction

+ Bar-code and pool

Balanced Blocked Design

.

A A A

+ Preparation for sequencing

+ Sequence technical replicates
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Map based analysis

« Treatment

« Biological replicate

* RNA extraction and
preparation for
sequencing

+ Sequence each
sample in a lane

Lane 1

Confounded Design

Lane2 Lane3 Laned4 Lane5 LaneB
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RNA-seq analysis Map based analysis

Experimental design

@ Count reads (convert to RPKM/FPKM?)

@ Small number of reads (= low RPKM/FPKM values) often
non-significant

@ Remember that Fold change is not the same as significance

Condition 1 Condition2 Fold_Change Significant?

Gene A 1 2 2-fold No

Gene B 100 200 2-fold Yes

DsC
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Two main routes for analysis

RNA-Seq reads
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RNA-seq analysis de-novo assembly

Major challenges in relation to genome assembly

o Genes show different levels of gene expression, hence uneven
coverage among genes

@ Many genes are expressed in different isoforms

@ As sequence depth increase detected number of loci increase.
(What is actually expressed?)

@ Sequence error from highly expressed genes might be seen more
often than "true" sequences from lowly expressed genes
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RNA-seq analysis de-novo assembly

Several programs available

o SOAP-denovo TRANS
o Oases

o Trans-ABYSS

o Trinity

All of them uses de Bruijn graphs to cope with the data and many of
them are based on genome assembly programs
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Trinity

a Generate all substrings of length k from the reads

HONGE EEGNG  GEGEE ererr
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RNA-seq analysis de-novo assembly

Summary - with ref.

@ Map to genome allow for spliced alignment

o If novel transcripts of interest: use method that can re-create
transcripts from mapped reads (Cufflinks, Scripture or
Bayesembler)

NB! In well annotated genomes most reads should map to known
genes

o If interest is expression of known genes/exons: Use available
annotation for analysis

@ Spend time on experimental design and more replicates gives
more power in gene expression analysis

>
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RNA-seq analysis de-novo assembly

Summary - without ref.

,
» )
»

<

o Assemble using your favourite assembler

@ Spend lots of time in assessing the results (compare to related
species, look for ORFs etc)

o Often large number of partial transcripts (hence often large
number of contigs).

o Merge with other data from transcripts?

20160922
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RNA-seq analysis de-novo assembly

Main exercise - RNA seq pipeline

Ref. data —P l Star

(fasta,GTF)
Mapped reads
(sam)

Samtools
(sort + index)

Qualimap
e,

l featurecounts

edgeR (R package
for differential gene
expression )

List of DE genes
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RNA-seq analysis de-novo assembly

Bonus exercises

@ Functional annotations Making sense of DE results using GO
terms etc

@ Exon usage Look at alternative splicing
@ Visualisation View bam files and create plots from DE data

@ De novo assembly of transcriptomes Analyse data without
reference
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