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Differential expression analysis

The identification of genes (or other types of genomic features, such as transcripts or
exons) that are expressed in significantly different quantities in distinct groups of
samples, be it biological conditions (drug-treated vs. controls), diseased vs. healthy
individuals, different tissues, different stages of development, or something else.
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Some statistical aspects

* Properties of RNA-seq data
* Replicates
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How are RNA-seq data generated?
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"Transcriptional real estate”

Top # of ENSEMBL transcripts
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Count-based statistics

People often use discrete distributions (Poisson, negative binomial etc.) rather
than continuous (e g normal) distributions for modeling RNA-seq data.

This is natural when you consider the way data are generated.

Thus, many DE analysis tools demand tables of integer read counts as input,
rather than RPKM/FPKM/TPM.
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Normalization/scaling/transformation: different goals

R/FPKM: (Mortazavi et al. 2008)
Correct for: differences in sequencing depth and transcript length

Aiming to: compare a gene across samples and diff genes within sample

TMM: (Robinson and Oshlack 2010)

Correct for: differences in transcript pool composition; extreme outliers
Aiming to: provide better across-sample comparability

TPM: (Li et al 2010, Wagner et al 2012)
Correct for: transcript length distribution in RNA pool
Aiming to: provide better across-sample comparability
Aiming to: stabilize variance; remove dependence of variance on the mean
Optimal Scaling of Digital Transcriptomes
Gustavo Glusman [E], Juan Caballero, Max Robinson, Burak Kutlu, Leroy Hood
DOI: 10.1371/journal.pone.0077885
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TMM - Trimmed Mean of M values

Attempts to correct for differences in RNA composition between samples

E g if certain genes are very highly expressed in one tissue but not another, there will be less
“sequencing real estate” left for the less expressed genes in that tissue and RPKM normalization
(or similar) will give biased expression values for them compared to the other sample

RNA population 1 RNA population 2

Equal sequencing depth -> orange and red will get lower RPKM in RNA population 1 although the
expression levels are actually the same in populations 1 and 2

Robinson and Oshlack Genome Biology 2010, 11:R25, http://genomebiology.com/2010/11/3/R25
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Sci

Normalization in DE analysis

edgeR, DESeq2 and some others want to keep the (integer) read counts in
the DE testing because they

- Use a discrete statistical model
- Want to retain statistical power (see next slide)

... but they implicitly normalize (by TMM in edgeR and RLE in DESeq2) as
part of the DE analysis.

Programs like SAMSeq and limma are fine with continuous values (like
FPKM), the former because it has a rank based model and the latter
because it cares more about the mean-variance relationship being weak.
They also apply their own types of normalization as part of the DE testing.
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Count nature of RNA-seq data

Programs like edgeR and DESeq2 want to make use of the count nature of RNA-seq data to
increase statistical power. The reasoning goes something like this:

(simplified toy example!)

Scenario 1: A 30000-bp transcript has 1000 counts in sample A and 700 counts in sample B.
Scenario 2: A 300-bp transcript has 10 counts in sample A and 7 counts in sample B.

Assume that the sequencing depths are the same in both samples and both scenarios. Then the
RPKM is the same in sample A in both scenarios, and in sample B inboth scenarios.

In scenario A, we can be more confident that there is a true difference in the expression level than
in scenario B (although we would want replicates of course!) by analogy to a coin flip — 600 heads
out of 1000 trials gives much more confidence that a coin is biased than 6 heads out of 10 trials
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Experimental design

Copyright © 2010 by the Genetics Society of America
DOL: 10.1534/genetics.110.114983

Statistical Design and Analysis of RNA Sequencing Data |mporta nt for su bsequent DE analysis!

Paul L. Auer and R. W. Doerge'

Department of Statistics, Purdue University, West Lafayette, Indiana 47907
Manuscript received January 31, 2010 M :
Accepted for publication March 15, 2010 Re p | catl on
Randomizati

http://www.genetics.org/content/185/2/405
Blocking

Balanced Blocked Design Confounded Design

* Treatment A A A B B B » Treatment A A A B B B

* Biological replicate « Biological replicate

* RNA extraction + RNA extraction and
preparation for
sequencing

* Bar-code and pool

+ Preparation for sequencing

+ Sequence each

« Sequence technical replicates (
sample in a lane

Lane 1 Lm? Lane3 Lane 4 Lane5 Lane ane1 Lane2 Lane3 Laned Lane5 Lane6
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Technical vs biological replicates

Technical replicates:

e Assess variability of measurement technique

e Typically low for bulk RNA-seq (not necessarily single-cell RNA-seq)

* Poisson distribution can model variability between RNA-seq technical
replicates rather well

Biological replicates:

» Assess variability between individuals / “normal” biological variation

* Necessary for drawing conclusions about biology

* Variability across RNA-seq biological replicates not well modelled by
Poisson — usually negative binomial (“overdispersed Poisson”) is used
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Replicates and differential expression

Intuitively, the variation between the groups that you want to compare should be
large compared to the variation within each group to be able to say that we have
differential expression.

The more biological replicates, the better you can estimate the variation. But how
many replicates are needed?

Depends:

Homogeneous cell lines, inbred mice etc: maybe 3 samples / group enough.
Clinical case-control studies on patients: can need a dozen, hundreds or thousands,
depending on the specifics ....
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How many biological replicates are needed in an RNA-seq
experiment and which differential expression tool should
you use?

RNA 22:1-13, 2016

NICHOLAS ). SCHURCH,""® PIETA SCHOFIELD,"*®* MAREK GIERLINSKI,">"* CHRISTIAN COLE,"®
ALEXANDER SHERSTNEV,"® VIJENDER SINGH,% NICOLA WROBEL,*> KARIM GHARBI,?
GORDON G. SIMPSON,* TOM OWEN-HUGHES,? MARK BLAXTER,® and GEOFFREY J. BARTON"?*

48 wild-type and 48 mutant (snf2 deletion) biological replicates in yeast
(well studied, relatively small genome, few multi-exonic genes => should be a relatively

“simple” case)
Recommendation:

At least six replicates per condition for all experiments.
At least 12 replicates per condition for experiments where
identifying the majority of all DE genes is important.
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Different software packages and choices

* Mapping vs pseudo-alignment
* Parametric vs non-parametric
* |Isoform-level vs gene-level

 Complex vs simple comparisons
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Or BitSeq, eXpress, RSEM, Sailfish etc.

Or BitSeq, ebSeq etc.

SCiLy%Lab

[ RNA-Seq short reads ]

[ Quality control ]

(FastQC)

(Tophat) (RSEM)

[ Mapping to reference ] [ Mapping and detection of DEGs ]

FPKM
based
strategy

Count based
strategy

l

l

e

Calculate transcript abundances
(Cufflinks)

Generate count data

(HTSeq)

l

l

Detection of DEGs
(Cufflinks)

& Or SAMSeq, limma, etc.
(DESeq, edgeR)

[ Detection of DEGs
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Alternative - Kallisto/Sleuth “pipeline”:

Pseudo-alighnment + transcript-centric
quantification and DE analysis

Map to reference

transcriptome
(Kallisto)

- Build an index by chopping ref transcriptomes
into k-mers and putting them into “colored”

Differential
gra phS exp:;?tsrl‘osr;eaurlilysm
CAG AGG GGA
TCA
GTC
CGA
TCG

B 4
B2
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Kallisto/Sleuth “pipeline”:

Pseudo-alighnment + transcript-centric
quantification and DE analysis

Map to reference

transcriptome
(Kallisto)

Differential
expression analysis
with Sleuth

CAG AGG GGA
TCA
When a new read is observed, chop it
into k-mers and see what it is
compatible with. E g observe TCGA:
GTC

TCGA

CGA TCGA

TCG

B 4
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Differential expression analysis?

, ) , signal _ difference between group means
Couldn’t we just use a Student’s t test for —— vanability of groups
each gene? - i

- Xr = Xc
SE(X; - Xc)
= t-value

Problems with this approach. http://www.socialresearchmethods.net/kb/stat_t.php

- May have few replicates
- Distribution is not normal

- Multiple testing issues
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SCiLfeLab

TABLE 8.1

List of (some) Software Tools for Differential Expression Analysis

Software
Tool

DESeq
edgeR

tweeDESeq

Limma

SAMSeq
(samr)

NOISeq

CuffDiff

BitSeq

ebSeq

Type of
Software

R/Bioconductor
package

R/Bioconductor
package

R/Bioconductor

package

R/Bioconductor
package

R package

R/Bioconductor
package

Linux command
line tool

Linux command
line tool and R
package

R/BioConductor
package

Analysis Approach
Count-based (negative
binomial)
Count-based (negative
binomial)
Count-based (Tweedie
distribution family)

Linear models on
continuous data

Nonparametric test

Nonparametric test

Isoform
deconvolution +
count-based tests

Isoform deconvolution in
a Bayesian framework

Isoform deconvolution
in a Bayesian
framework

Comment

Considered conservative
(low false-positive rate)

Similar to DESeq in
philosophy

More general than
DESeq/edgeR, but new
and not widely tested

Originally developed for
microarray analysis, very
thoroughly tested. Need
to preprocess counts to
continuous values

Adapted from the SAM
microarray DE analysis
approach. Works better
with more replicates

Can give differentially
expressed isoforms as
well as genes (also
differential usage of TSS,
splice sites)

Can give differentially
expressed isoforms. Also
calculates (gene and
isoform) expression
estimates

Can give differentially
expressed isoforms. Can
be used in a pipeline
preceded by RSEM
expression estimation
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Parametric vs. non-parametric methods

It would be nice to not have to assume anything about the expression value
distributions but only use rank-order statistics. -> methods like SAM
(Significance Analysis of Microarrays) or SAM-seq (equivalent for RNA-seq data)

However, it is (typically) harder to show statistical significance with non-
parametric methods with few replicates.

According to Simon Anders (creator of DESeq) non-parametric methods are
definitely better with 12 replicates and maybe already at five

http.//seqanswers.com/forums/showpost.php?p=74264&postcount=3

.. but ...
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But: Revisiting the 48-replicate

benchmark paper

TABLE 1. RNA-seq differential gene expression tools and statistical tests

Assumed
Name distribution Normalization Description
t-test Normal DEseq® Two-sample t-test for equal variances
log t-test Log-normal DEseq’ Log-ratio t-test
Mann-Whitney None DEseq® Mann-Whitney test
Permutation None DEseq* Permutation test
Bootstrap Normal DEseq* Bootstrap test
baySeq*© Negative Internal Empirical Bayesian estimate of posterior
binomial likelihood
Cuffdiff Negative Internal Unknown
binomial
DEGseqg© Binomial None Random sampling model using Fisher’s
exact test and the likelihood ratio test
DESeqg*® Negative DEseq’ Shrinkage variance
binomial
DESeq2°© Negative DEseq’ Shrinkage variance
binomial
EBSeq© Negative DEseq® Empirical Bayesian estimate of posterior
binomial {median) likelihood
edgeR* Negative T™MM® Empirical Bayes estimation and either an
binomial exact test analogous to Fisher's exact
test but adapted to over-dispersed data
or a generalized linear model
Limma* Log-normal T™MMP Generalized linear model
NOISeq* None RPKM Nonparametric test based on signal-to-
noise ratio
PoissonSeq*© Poisson log- Internal Score statistic
linear model
SAMSeq® None Internal Mann-Whitney test with Poisson

resampling

Sci

Lab

For expefirnénts with <12 replicates I;er condition; use edgeR

(exact).

For experiments with >12 replicates per condition; use

DESeq.

Parametric methods apparently

working better ...
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Dealing with the “t test issues”

Distributional issue: Solved by variance stabilizing transform in limma - voom()
function

edgeR and DESeq model the count data using a negative binomial distribution
and use their own modified statistical tests based on that.
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Dealing with the “t test issues”

Distributional issue: Solved by variance stabilizing transform in limma — voom()
function

edgeR and DESeq model the count data using a negative binomial distribution
and use their own modified statistical tests based on that.

Multiple testing issue: All of these packages report q values or some other type
of false discovery rate corrected p values. For SAMseq based on resampling, for
others usually Benjamini-Hochberg corrected p values.
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Dealing with the “t test issues”

Distributional issue: Solved by variance stabilizing transform in limma — voom()
function

edgeR and DESeq model the count data using a negative binomial distribution
and use their own modified statistical tests based on that.

Multiple testing issue: All of these packages report q values or some other type
of false discovery rate corrected p values. For SAMseq based on resampling, for
others usually Benjamini-Hochberg corrected p values.

Variance estimation issue: edgeR, DESeq2 and limma (in slightly different ways)
“borrow” information across genes to get a better variance estimate. One says
that the estimates “shrink” from gene-specific estimates towards a common
mean value.
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Fragment count

1) Model cross-replicate fragment count
dispersion (negative binomial)

Variance

Isoform A Mean

- Isoform B

* 2) Determine maximume-likelihood
Likelihood assignment of fragments to
isoforms

100% <*——> 100%
Isoform A Isoform B

No. of fragments

3) Model uncertainty in assignment
of fragments to isoforms
(beta)

Probability

No. of fragments from No. of fragments from
isoform A isoform A

\——I—I—I“
25 50 75 25 50 75

4) Combine uncertainty and overdispersion into a single model of
fragment count variability (beta negative binomial)

Probability

Probability

-m—— m P No. of fragments from
—— isoform A
Condition X
I >
=
©
Qo
<]
a
|| ™
Condition Y 25 50 75

5) Test for signficance of changes between
conditions in transcript-level counts

Scil ifel.ab

CuffDiff2

Integrates isoform quantification +
differential expression analysis.

Also: BitSeq
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Sleuth

Developed by the same team as CuffDiff, and superior to it according to
them. Based on Kallisto.

Transcript-oriented (like CuffDiff)

Includes uncertainty coming from “quantification noise” (like CuffDiff)

Supports modelling multiple experimental factors (unlike CuffDiff)
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Reason to use transcript-level analysis

Exon intersection s

7

[soform 1 s —
Isoform 2 \ Exon union s P—
Condition A Condition B Fold change Fold change Fold change
(actual) (union) (intersection)
occPc 02 . 9,
It S N L e e o 38/30 14/14 717
L a % ‘. .\.u
C— ) S [— ———
Isoform 1: 12/3L; 4/3L Condition A: 12/3L + 2/2L = 30/6L
Isoform 2: 2/2L; 10/2L Condition B: 4/3L + 10/2L = 38/6L
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Assembly-based DE: Ballgown

Ballgown bridges the gap between transcriptome Set of BAM files
assembly and expression analysis

Reference
Alyssa C Frazee, Geo Pertea, Andrew E Jaffe, Ben Langmead, Steven L Salzberg & Jeffrey guided assembly
T Leek (Cufflinks)
Affiliations | Corresponding author v

Set of assemblies

Merge assemblies
(CuffMerge)

Nature Biotechnology 33, 243—-246 (2015) | doi:10.1038/nbt.3172

Relatively untested, but more general than most existing

tools: Consensus assembly

Generate FPKM/counts
for each assembled

- Does isoform-level expression i
) transcript in each sample
- Can test DE for novel transcripts (tablemaker)
- r mplex ign . .
Supports C,O_ plex desig S_ Contig expression table
- More sensitive than CuffDiff
- Provides a database back-end for handling transcript Process in Ballgown
assemblies

Differentially expressed contigs
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Complex designs

The simplest case is when you just want to compare two groups against each other.

But what if you have several factors that you want to control for?
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Complex designs

The simplest case is when you just want to compare two groups against each other.
But what if you have several factors that you want to control for?

E.g. you have taken tumor samples at two different time points from six patients,
cultured the samples and treated them with two different anticancer drugs and a mock
control treatment. -> 2x6x3 = 36 samples.
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Complex designs

The simplest case is when you just want to compare two groups against each other.
But what if you have several factors that you want to control for?

E.g. you have taken tumor samples at two different time points from six patients,
cultured the samples and treated them with two different anticancer drugs and a mock

control treatment. -> 2x6x3 = 36 samples.

Now you want to assess the differential expression in response to one of the
anticancer drugs, drug X. You could just compare all “drug X” samples to all control
samples but the inter-subject variability might be larger than the specific drug effect.
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Complex designs

The simplest case is when you just want to compare two groups against each other.
But what if you have several factors that you want to control for?

E.g. you have taken tumor samples at two different time points from six patients,
cultured the samples and treated them with two different anticancer drugs and a mock
control treatment. -> 2x6x3 = 36 samples.

Now you want to assess the differential expression in response to one of the
anticancer drugs, drug X. You could just compare all “drug X” samples to all control
samples but the inter-subject variability might be larger than the specific drug effect.

—~>limma / DESeq / edgeR / Sleuth which can work with factorial designs

(but not e g CuffDiff2, SAMSeq)
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Limma and factorial designs

limma stands for “linear models for microarray analysis” — but it can be used for RNA-
seq after applying voom() to a count matrix
Essentially, the expression of each gene is modeled with a linear relation

Linear Models

o In general, need to specify:
- Dependent variable

- Explanatory variables (experimental design,
covariates, etc.)

o More generally:
y=Xp+e¢€
TN

vector of design Vector of
observed matrix parameters to
data estimate

http://www.math.ku.dk/~richard/courses/bioconductor2009/handout/19_08_Wednesday/KU-August2009-LIMMA/PPT-PDF/Robinson-limma-linear-models-ku-2009.6up.pdf

The design matrix describes all the conditions, e g treatment, patient, time etc
y = a + b*treatment + c*time + d*patient + e*batch + f .

. Error term/noise
Baseline/average
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Which software to choose?

e Based on need
e Benchmarks
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Decision tree for software selection (2015)

Differentially expressed exons => DEXSeq
Differentially expressed isoforms => BitSeq, Cuffdiff or ebSeq
Differentially expressed genes => Select type of experimental design
Complex design (more than one varying factor) => DESeq, edgeR,
limma
Simple comparison of groups => How many biological replicates?
More than about 5 biological replicates per group => SAMSeq
Less than 5 biological replicates per group => DESeq, edgeR,

limma
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Decision tree for software selection (2016)

Differentially expressed exons => DEXSeq  sjeyth
Differentially expressed isoforms => BitSeq, €uffdiff or ebSeq
Differentially expressed genes => Select type of experimental design
Complex design (more than one varying factor) => DESeq, edgeR,
limma, Sleuth
Simple comparison of groups => How many biological replicates?
More than about 5 biological replicates per group =>SAMSeq-
Less than 5 biological replicates per group => DESeq, edgeR,
?

limma
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Sensitivity
0.4 0.8

0.2

0.0
|

(a)

Sci

Other DE software comparisons (1)

ROC of TagMan data

0.6
|

logFC cutoff= 0.5

DESeq AUC = 0.894
== edgeR AUC =0.894
limmaQN AUC = 0.865
=== [immaVoom AUC = 0.87
PoissonSeq AUC = 0.878
== CuffDiff AUC = 0.865
baySeq AUC = 0.884

10 0.8

I I
0.6 04

Specificity

I I
0.2 0.0

Comprehensive evaluation of differential expression
analysis methods for RNA-seq data

Franck Rapaport !, Raya Khanin !, Yupu Liang !, Azra Krek !, Paul Zumbo 2,
Christopher E. Mason 2'4, Nicholas D. Socci !, Doron Betel 34

I Bioinformatics Core, Memorial Sloan-Kettering Cancer Center, New York

2Dep:m.mem of Physiology and Biophysics, Weill Cornell Medical College, New York

3 Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York

4 Institute for Computational Biomedicine, Weill Cornell Medical College, New York

Lab

January 24, 2013

TagMan AUCs

8 — DESeq

- = edgeR
limmaQN

=== limmaVoom
PoissonSeq

w— CuffDiff
baySeq

0.95
I

AUC
0.90
1

0.85
|

0.5 1.0 1.5 2.0

logFC cutoff values

DESeq, edgeR, PoissonSeq come out well
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Number of detected genes (mouse) >

Number of detected genes (human)
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Other DE software comparisons (2)

Proportion of detected genes

Proportion of detected genes

| verylow O low

1.04

0.8 4

0.6 4
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0.2 4

0.0-

All genes

All genes

O medium @ high
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Cuffdiff2
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SAMseq

Cuffdift2 |
NOlseq
baySeq
DESeq
EBSeq
Limma
edgeR
SAMseq
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€ edgeR
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<> Cuffdiff2
EBSeq
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Brietin%s in Bioinformatics Ad A published D 2,2013
BRIEFINGS IN BIOINFORMATICS. page | of 12 8ol:10.1093 o/ bbt086

Comparison of software packages for
detecting differential expression in
RNA-seq studies

Fatemeh Seyednasrollah, Asta Laiho and Laura L. Elo

Submitced: 20th Acgust 2013; Received (in revised form): ch Occober 2003

Limma, DESeq, baySeq
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Other DE software comparisons (3-4)

Research article Highly accessed

A comparison of methods for differential expression analysis
of RNA-seq data
12

Charlotte Soneson’”™ and Mauro Delorenzil?

* Corresponding author: Charlotte Soneson Charlotte.Soneson@isb-sib.ch v Author Affiliations

1 Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland

2 Département de formation et recherche, Centre Hospitalier Universitaire Vaudois and University
of Lausanne, Lausanne, Switzerland

For all author emails, please log on.

BMC Bioinformatics 2013, 14:91 doi:10.1186/1471-2105-14-91

Nice code examples in supplementary

material: R code for all tested packages

A comparative study of techniques for differential expression
analysis on RNA-Seq data

Zong Hong Zhang, Dhanisha J. Jhaveri, Vikki M. Marshall, et al.

bioRxiv posted online May 28, 2014
Access the most recent version at doi: http://dx.doi.org/10.1101/005611
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Take-away messages from DE tool
comparison

-edgeR, DESeq and limma (the latter of which does not use the negative
binomial distribution) tend to to work well

-CuffDiff2, which should theoretically be “better”, seems to work worse,
perhaps due to the increased “statistical burden” from isoform expression
estimation. Two studies also report poor performance with >5 replicates

-The HTSeq quantification which is theoretically “wrong” seems to give good
results with downstream software

-1t is practically always better to sequence more biological replicates than to
sequence the same samples deeper

Not considered in these comparisons:
- gains from ability to do complex designs
- isoform-level DE analysis (hard to establish ground truth)

- some packages like BitSeq, Sleuth
Scil ifclLab S5 o ¥ @
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Miscellaneous (if there is time)

* Visualization of DE analysis results
* Normalization and scaling

e Batch normalization

* Mixtures of cell types

 Beyond univariate DE analysis
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Differential expression analysis output

Top 10 differentially expressed genes tables for each contrast
Top differentially expressed genes: full_table_E16.5wt-E16.5ko.txt

Identifier logFC logCPM LR PValue FDR
ENSMUSG |- 0.68747064 |130.820399 |2.71053464 [1.02973211
000000466 |5.46102265 (8417142 258671 157785e-30 |033542e-25
23 507855
ENSMUSG |- 0.68747064 [{130.820399 |2.71053464 [1.02973211
000000466 |5.46102265 (8417142 258671 157785e-30 |033542e-25
23 507855

(and soon ...)

Log fold change, FDR

How to visualize?
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Looking at top genes one by one
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More global view

—log(res$padi)

Volcano plot
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Normalization/scaling/transformation: different goals

R/FPKM: (Mortazavi et al. 2008)
Correct for: differences in sequencing depth and transcript length

Aiming to: compare a gene across samples and diff genes within sample

TMM: (Robinson and Oshlack 2010)

Correct for: differences in transcript pool composition; extreme outliers
Aiming to: provide better across-sample comparability

TPM: (Li et al 2010, Wagner et al 2012)
Correct for: transcript length distribution in RNA pool
Aiming to: provide better across-sample comparability
Aiming to: stabilize variance; remove dependence of variance on the mean
Optimal Scaling of Digital Transcriptomes
Gustavo Glusman [E], Juan Caballero, Max Robinson, Burak Kutlu, Leroy Hood
DOI: 10.1371/journal.pone.0077885
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TMM - Trimmed Mean of M values

Attempts to correct for differences in RNA composition between samples

E g if certain genes are very highly expressed in one tissue but not another, there will be less
“sequencing real estate” left for the less expressed genes in that tissue and RPKM normalization
(or similar) will give biased expression values for them compared to the other sample

RNA population 1 RNA population 2

Equal sequencing depth -> orange and red will get lower RPKM in RNA population 1 although the
expression levels are actually the same in populations 1 and 2

Robinson and Oshlack Genome Biology 2010, 11:R25, http://genomebiology.com/2010/11/3/R25
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Sci

Normalization in DE analysis

edgeR, DESeq2 and some others want to keep the (integer) read counts in
the DE testing because they

- Use a discrete statistical model
- Want to retain statistical power (see next slide)

... but they implicitly normalize (by TMM in edgeR and RLE in DESeq2) as
part of the DE analysis.

Programs like SAMSeq and limma are fine with continuous values (like
FPKM), the former because it has a rank based model and the latter
because it cares more about the mean-variance relationship being weak.
They also apply their own types of normalization as part of the DE testing.
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Batch normalization

Often, putting the experimental batch as a factor in the design matrix is
enough.

If you wish to explicitly normalize away the batch effects (to get a new,
batch-normalized expression matrix with continuous values), you can use a

method such as ComBat.

(Designed for microarrays, should use log scale values for RNA-seq)

Johnson, WE, Rabinovic, A, and Li, C (2007). Adjusting batch effects in microarray
expression data using Empirical Bayes methods. Biostatistics 8(1):118-127.
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DE analysis in mixtures of cell types

Gene Cell-type Group cell type—specific
expression frequency expression profiles
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Shen-Orr SS, Tibshirani R, Khatri P, Bodian DL, Staedtler F, Perry NM, Hastie

CellMix, R package
implementing several
deconvolution methods (most
for microarray)

Gaujoux R, Seoighe C. CellMix: a
comprehensive toolbox for gene expression
deconvolution. Bioinformatics. 2013 Sep
1;29(17):2211-2. doi:
10.1093/bioinformatics/btt351.

T, Sarwal MM, Davis MM, Butte AJ. Cell type-specific gene expression differences

in complex tissues. Nat Methods. 2010 Apr;7(4):287-9.
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Beyond univariate differential expression (1)

Multivariate methods such as PCA (unsupervised) or PLS (supervised) can be used to
obtain loadings for features (genes/transcripts/...) that contribute to separation of groups
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Beyond univariate differential expression (2)

Statistical/machine learning approaches:

Can use gene or transcript expression levels as features in a statistical model when
trying to predict some class (classification) or continuous variable (regression)

Feature selection methods frequently needed to reduce the number of genes/
transcripts used in the model. E g lasso/elastic net or Boruta (random forest based
feature selection).
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