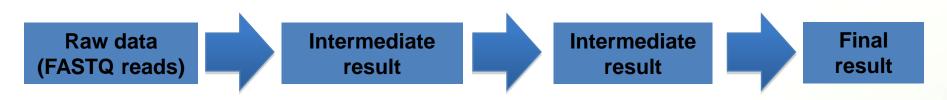
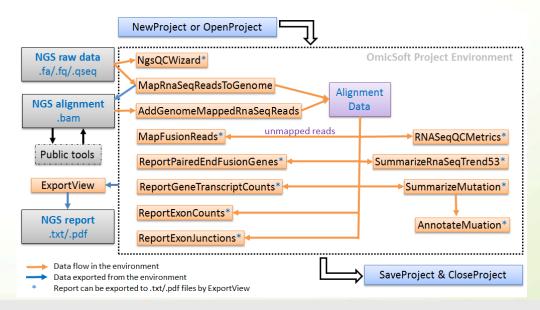


Next Generation Sequencing and

Bioinformatics Analysis Pipelines


Adam Ameur National Genomics Infrastructure SciLifeLab Uppsala adam.ameur@igp.uu.se



What is an analysis pipeline?

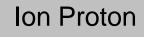
Basically just a number of steps to analyze data

Pipelines can be simple or very complex...

Today's lecture

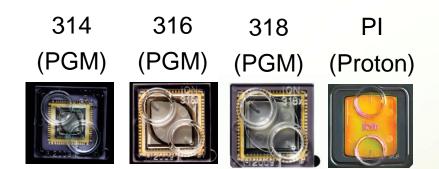
- Sequencing instruments and 'standard' pipelines

 IonTorrent/PacificBiosciences
- In-house bioinformatics pipelines, some examples
- News and future plans


Ion Torrent - PGM/Proton

- The Ion Torrent System
 - 6 instruments available in Uppsala, early access users
 - Two instruments: PGM and Proton
 - For small scale (PGM) and large scale sequencing (Proton)
 - Rapid sequencing (run time ~ 2-4 hours)
 - Measures changes in pH
 - Sequencing on a chip

Personal Genome Machine (PGM)

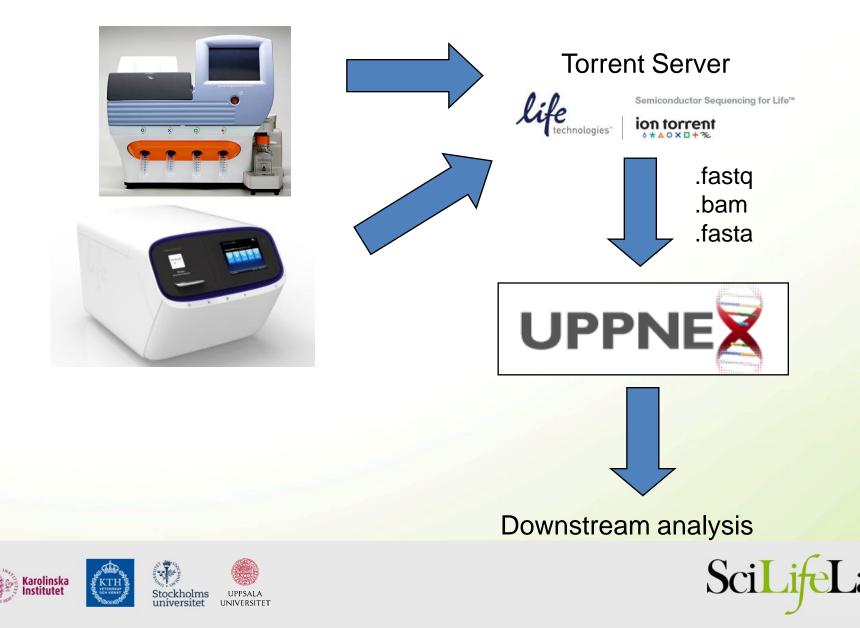


Ion Torrent output

• Ion Torrent throughput

~ from 10Mb to >10Gb, depending on the chip

2 human exomes (PI chip) 2 human transcriptomes 1 human genome = 6 PI chips



- Read lengths: 400bp (PGM), 200bp (Proton)
- Output file format: FASTQ
- What can we use Ion Torrent for?
 - Anything, except perhaps very large genomes

Ion Torrent analysis workflow

Torrent Suite Software

+ H* http://130.238.211.77/login/		10		er Life Techno			C Q- Google						
□ III journals v next-gen v publications v db v	iontorrent v pachio v tools v	▼ genomes ▼ bi		uppnex v git	scholar Impor	to Mendele		spider cafeolof					
ere ma loonnaa nen Ben kannennaa aa	internal parallel to the	Jenenies in		ippren gr			passing Summer Sector						
torrent browser	•				Pas	sword		ogin Remembe	er Me				
		OR Reg	ister for a n	iew account									
								Torran	t Server – Torrent Browser				
	a.			+ H*http://130	.238.211.68/rundb	/		Tonen	it server - roment browser		Q Google		
_	01	02	•• II =	iii journals ▼ ne	ext-gen ≠ publicat	ions≖ db∓	tools ▼ genomes ▼ bioc ▼ uu ▼ u	opnex • google scholar	pubmed Import to Mendeley	mail			
			Torr	ent Se	rver								ion torre
			PLANNING		REPORTS	SERVICES	REFERENCES CONFIG	HELP/ABOUT					A ★ △ ○ × □ + by life technologies
		\odot				******							by Are technologies
			Date start	i I		Date en	d	PGM	Project Sample	Reference	Storage S	tarred Search by Run	1
	Plan	Monit	November	5 0	2008 🛟	Februar	2012	None 🔹	None None	None 🔹	None 🔹		Go
	Flan	MOUL											
			* +		Runs∔↑	Chip	Project + †	Sample ↓ ↑			Status 1 †	Storage + †	Date 🕹 †
			0	Analyze ►		316D	selector-kras-c12-13	test-kras	<u>KRAS_c12_13</u>		Complete	Delete Raw 🗘	Jan 24 2012
			0	Analyze ►	<u>UU2-10</u>	316D	ugit007-5-uu2	ugit007-5-uu	u2 <u>GU562296</u>	UU2	Complete	Delete Raw	Jan 20 2012
			0	Analyze ►	<u>UU2-9</u>	314R	ugit006-1-uu2	ugit006-1-uu	u2 <u>NC012225</u>	UU2	Complete	Delete Raw	Jan 20 2012
			- O	Analyze ►	<u>UU2-8</u>	316D	ugit007-3-uu2	ugit007-3-uu	u2 <u>GU562296</u>	UU2	Complete	Delete Raw	Jan 19 2012
			- O	Analyze 🕨	<u>UU1-22</u>	316D	ugit007-4-uu1	ugit007-4-uu	u1 <u>GU562296</u>	UU1	Complete	Delete Raw	Jan 19 2012
			• •	Analyze 🕨	<u>UU1-21</u>	314R	ugit007-2-uu1	ugit007-2-uu	u1 <u>GU562296</u>	UU1	Complete	Delete Raw	Jan 19 2012
			- O	Analyze ►	<u>UU2-7</u>	314R	ugit007-1-uu2	ugit007-1-uu	u2 <u>GU562296</u>	UU2	Complete	Delete Raw	Jan 19 2012
			- O	Analyze ►	<u>UU2-6</u>	314R	ugit005-1-uu2	ugit005-1-uu	u2 <u>AL390716</u>	UU2	Complete	Delete Raw	Jan 12 2012
			- o	Analyze ►	UU2-5	316D	ugit001-1-uu2-ot	ugit001-1-u	u2-ot <u>NC000913</u>	UU2	Complete	Delete Raw	Jan 12 2012
			- O	Analyze ►		314R	ugit003-2-uu1	ugit003-2-u		UU1	Complete	Delete Raw	Jan 02 2012
			- ·	Analyze ►		314R	ugit003-1-uu1	ugit003-1-ut		001	Complete	Delete Raw	Jan 02 2012
			8 0		<u>UU1-18</u>	316D	ugit002-2-uu1	ugit002-2-u		UU1		Delete Raw	Dec 19 2011
ion torrent	FOR RESEARCH USE ON	LY. NOT INTEND									Complete		
0 * ∆ 0 × □ + ≈	© 2013 Life Technologies C		~ •		<u>UU1-17</u>	316D	ugit002-1-uu1	ugit002-1-u		001	Complete	Delete Raw	Dec 19 2011
by life technologies"	e e la completa e			Analyze ►		316D	ugit001-1-uu2-111216	ugit001-1-uu		UU2	Complete	Delete Raw	Dec 17 2011
			- O	Analyze ►	<u>UU1-16</u>	314R	ugit004-4-uu1	ugit004-4-uu	u1 <u>Lacto_GG</u>	UU1	Complete	Delete Raw	Dec 14 2011
			0	Analyze 🕨	<u>UU1-15</u>	314R	ugit004-1-uu1	ugit004-1-uu	u1 <u>Lacto GG</u>	UU1	Complete	Delete Raw	Dec 14 2011
			0	Analyze 🕨	<u>UU1-14</u>	316D	ugit1-2	ugit1-2-1112	215 <u>NC000913</u>	UU1	Complete	Delete Raw	Dec 13 2011
			- o	Analyze 🕨	<u>UU1-14</u>	316D	ugit1-1	ugit1-1-1112	215 <u>NC000913</u>	UU1	Complete	Delete Raw	Dec 13 2011
					2								
			Θ Ο	Analyze 🕨	<u>UU1-12</u>	314R	ugit43-111205	ugit43-1112	05 Lacto GG	UU1	Complete	Delete Raw 🔷	Dec 03 2011

Karolinska Institutet

Torrent Suite Software Analysis

- Plug-ins within the Torrent Suite Software
 - Alignment
 - TMAP: Specifically developed for Ion Torrent data
 - Variant Caller
 - SNP/Indel detection
 - Assembler
 - MIRA
 - AmpliSeq analysis (Human Exomes and Transcriptomes)
 - SNP/Indel detection in amplicon-seq data
 - Expression analysis by AmpliSeq

Analyses are started automatically when run is complete

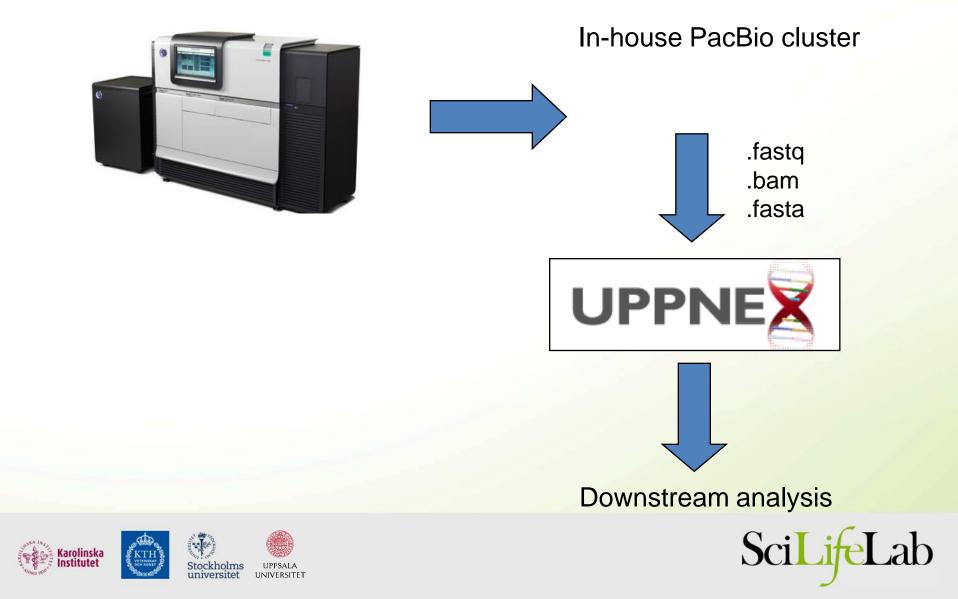
Pacific Biosciences

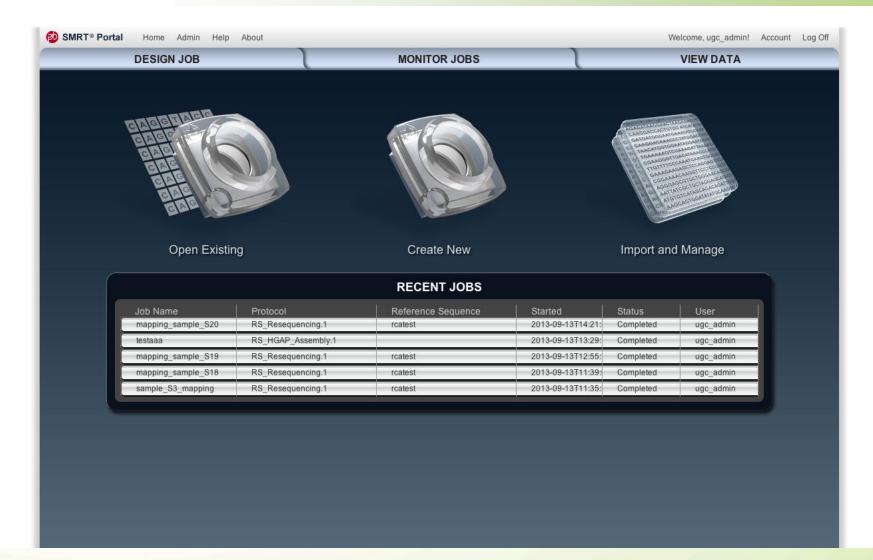
- Pacific Biosciences
 - Installed summer 2013
 - Single molecule sequencing
 - Very long read lengths (up to 40 kb)
 - Rapid sequencing
 - Can detect base modifications (i.e. methylation)
 - Relatively low throughput

PacBio output

- PacBio throughput
 - ~ 1 Gb/SMRT cell

~1 bacterial genome ~1 bacterial transcriptome 1 human genome = 100 SMRT cells?


- PacBio read lengths: 500bp-40kb
- Output file format: FASTQ
- What can we use PacBio for?
 - Anything, except really large genomes

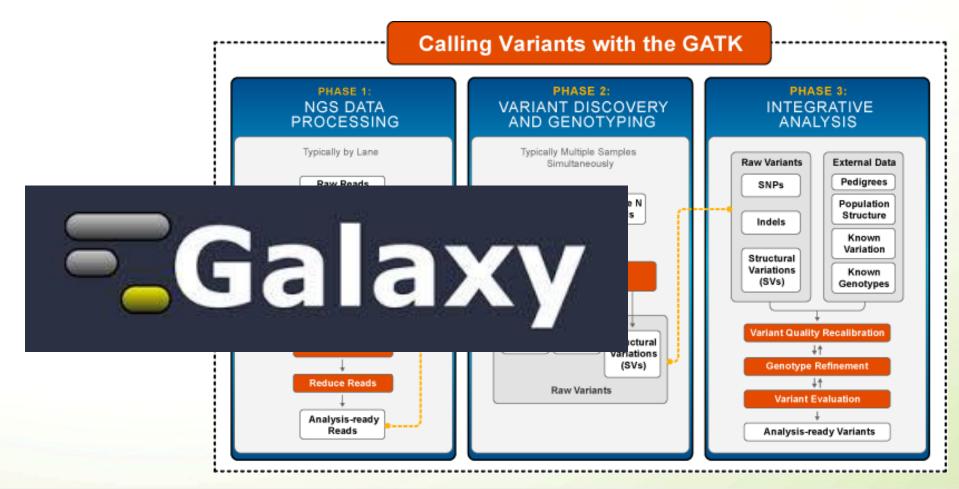


PacBio analysis workflow

SMRT analysis portal

SMRT analysis pipelines

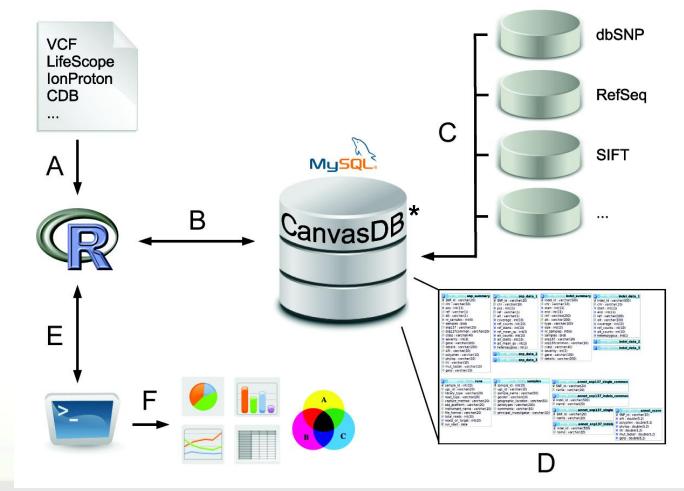
- Mapping
- Variant calling
- Assembly
- Scaffolding
- Base modifications


🤣 SMRT® Portal	Home Admin	Help Abo	ut	
	DESIGN JOE	3		MONITOR J
ob Name		Cor	nments	
Protocol [None selec	cted]	÷	Reference	[None selected]
SMRT Cells Avail	able (Viewing 1 -	50 of 62)	Search	Go Advanced
SMRT Cell Gotz -> Feature 16 Al Part 4	= = > Zoom: 원, 은, 원, Map QV: 😘 Base Mods: 여	View Reads: 🕎	mapping_somatic_3_2	
100579852	12.5) 664p 945p	oolege t joing	o 1,874p 1,198p	1,3flag 1,2flag 1,2flag
100579852				IISTIG I
100579852				
100579852				에서는 사람이 있는 것이라. 이가 가지 않는 것이다. 같은 것이 같은 것이 같은 것이 같은 것이 있는 것이다.
100579852	ا به این که به این از این این میشود این از این	n shinin <mark>na shinin.</mark> An an an a		가에는 것은 것이 있는 것이 가슴을 가지 않는 것이 있다. 같은 것은 것은 것이 같은 것이 있는 것은 것이 같은 것이 있는 것이 같이 있다.
100579852			ang	· 사람이 있는 것이 있다. 같은 사람이 있는 것이 같은 것이 같은 것이 있는 것이 있는 것이 같은 것이 같은 것이 같은 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 같이 있는 것이 있는 것이 있는 것이 있는 것이 있는
100579852	이는 것은 가슴을 통하는 것. 같이 아파 같이 있는 것이 같이 있다.		t die Arrei Colorian Suite State	에는 이상, 이를 위한 것은 것을 통해야 한다. 이 것은 이에 가슴에 가지 않는 것은 것을 가지 않는다.
100579852				그는 경찰에서 참장되었다. 같
100579732		a diretti en la sa Agina da sa diretti		
100579732	a barren er en			
100579732				
100579732	لا دروار جمع و مر وط کارد. اور استان کارد و میگرد کار			에는 바늘에 가지 않는 것이 있는 것이 있는 것이 같이 있는 것이 있다. 같이 같은 것이 같은 것이 있는 것이 같은 것이 같이 있는 것이 같이
x100 x210 x220				
x200 1244 x600 1260				
<u>×270</u> ×280				
1000 1000 1411				
400 100 100				가지는 것은 이번에 관한 것을 통하는 것을 가지? 같은 것이 같은 것은 것은 것은 것은 것은 것을 했다.
1466 1460 1405	an a china a shekara Mara mara a shekara a			
x480 x480	가지 가지 않는 것이 있었다. 같은 것은 것이 가지 않는 것이 있다. 같은 것은 것은 것이 가지 않는 것이 있는 것이 없다.		ne na serie de la serie de La serie de la s	

What about Illumina?

• There are many different pipelines for Illumina...

In-house development of pipelines


- The standard analysis pipelines are nice...
 ... but sometimes we need to do own developments
 ... or adapt the pipelines to our specific applications
- Some examples of in-house developments:

I. Building a local variant database (WES/WGS)
II. Assembly of genomes using long reads
III. Clinical sequencing – Leukemia Diagnostics

Example I: Computational infrastructure for exome-seq data

Background: exome-seq

- Main application of exome-seq
 - Find disease causing mutations in humans
- Advantages
 - Allows investigate all protein coding sequences
 - Possible to detect both SNPs and small indels
 - Low cost (compared to WGS)
 - Possible to multiplex several exomes in one run
 - Standardized work flow for data analysis
- Disadvantage
 - All genetic variants outside of exons are missed (~98%)

Exome-seq throughput

- We are producing a lot of exome-seq data
 - 4-6 exomes/day on Ion Proton
 - In each exome we detect
 - Over 50,000 SNPs
 - About 2000 small indels
 - => Over 1 million variants/run!

UNIVERSIT

• In plain text files

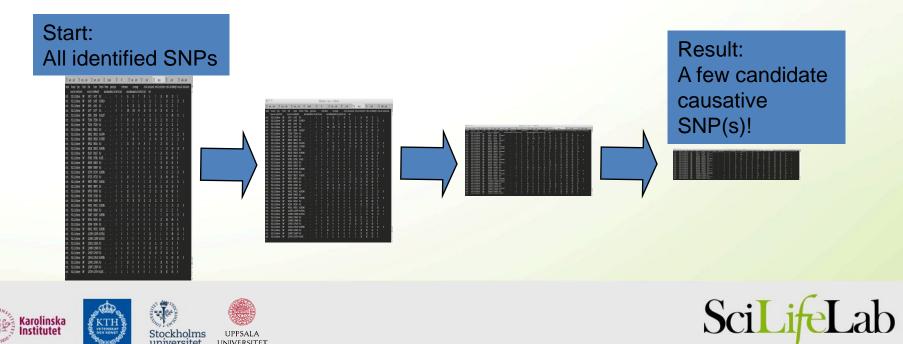
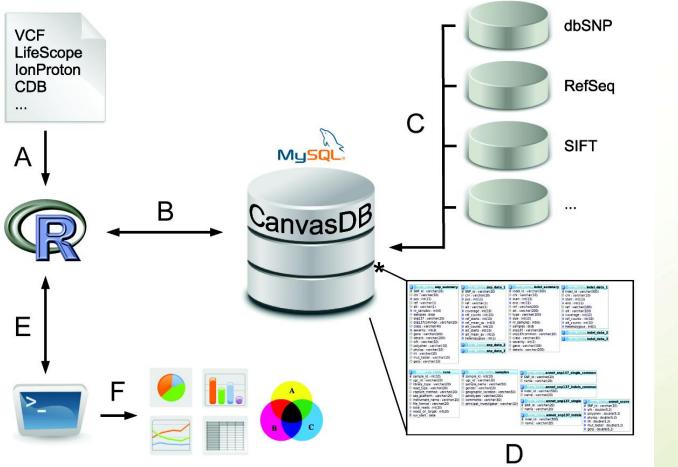

Sci

Image: A line with a line line with a line with a line line with a line with a line with a	79×41 ssh less ssh ssh soliash verage refilleleGounts refilleleStarts refilleleteanQ/ novelAlleleCounts antiAlleletCounts hot
drf: 33.(1).diByer: 39 13882(1).diByer: 39 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

How to analyze this?

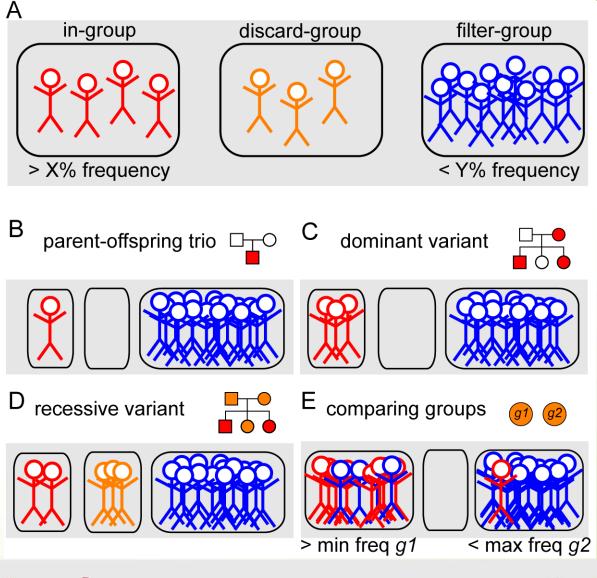
- Traditional analysis A lot of filtering!
 - Typical filters
 - Focus on rare SNPs (not present in dbSNP)
 - Remove FPs (by filtering against other exomes)
 - Effect on protein: non-synonymous, stop-gain etc
 - Heterozygous/homozygous
 - This analysis can be automated (more or less)

Why is this not optimal?


Drawbacks

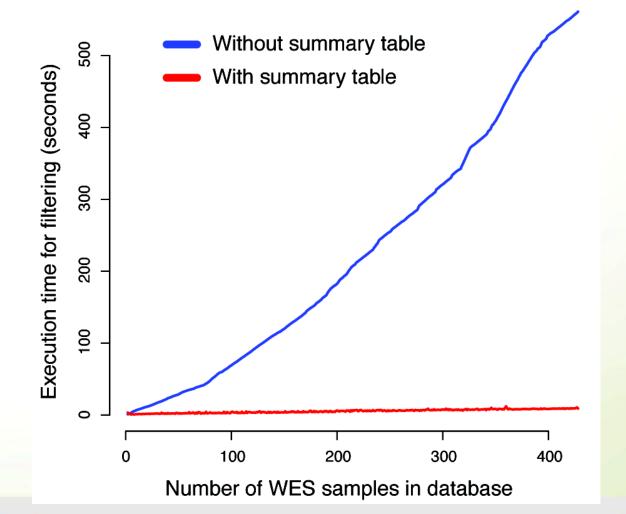
- Work on one sample at time
 - Difficult to compare between samples
- Takes time to re-run analysis
 - When using different parameters
- No standardized storage of detected SNPs/indels
 - Difficult to handle 100s of samples
- Better solution
 - A database oriented system
 - Both for data storage and filtering analyses

Analysis: In-house variant database


*CANdidate Variant Analysis System and Data Base

Ameur et al., Database Journal, 2014

CanvasDB - Filtering



CanvasDB - Filtering speed

• Rapid variant filtering, also for large databases

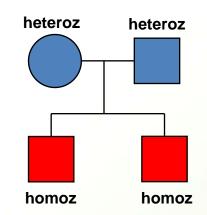
Sci

Stockholms

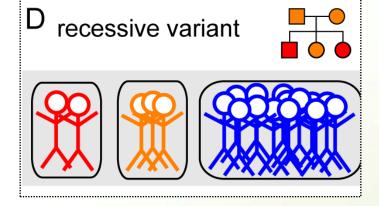
UNIVERSITE

A recent exome-seq project

- Hearing loss: 2 affected brothers


 Likely a rare, recessive disease
 Shared homozygous SNPs/indels
- Sequencing strategy
 - TargetSeq exome capture
 - One sample per PI chip

nr reads	(% mapped)	76M-89M (97%)
mapped reads	(% on target)	73M-88M (83%)
SNPs	(% in dbSNP)	85k-93k (93%)
Indels	(% in dbSNP)	5k-6k (48%)



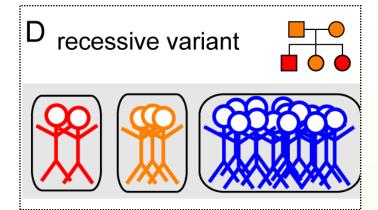
Filtering analysis

• CanvasDB filtering for a variant that is...

- rare

- at most in 1% of ~700 exomes
- shared
 - found in both brothers
- homozygous
 - in brothers, but in no other samples
- deleterious

• non-synonymous, frameshift, stop-gain, splicing, etc..


> cand <- filterRecessive(c("up_001_1","up_001_2"), outfile="cand.txt")
Total time for filtering: 27.012s</pre>

Filtering results

- Homozygous candidates
 2 SNPs
 - stop-gain in STRC
 - non-synonymous in *PCNT*
 - 0 indels

 Compound heterozygous candidates (lower priority) – in 15 genes

s	ample_name	class	chr	pos	ref	alt	snp137	gene	ref_counts	alt_counts
	up_001_1	stopgain	chr15	43896948	G	A	rs144948296	STRC	3	58
	up_001_2	stopgain	chr15	43896948	G	A	rs144948296	STRC	5	55
	up_001_1	nonsynonymous	chr21	47808772	G	A	rs35044802	\mathbf{PCNT}	0	21
	up_001_2	nonsynonymous	chr21	47808772	G	A	rs35044802	\mathbf{PCNT}	1	14

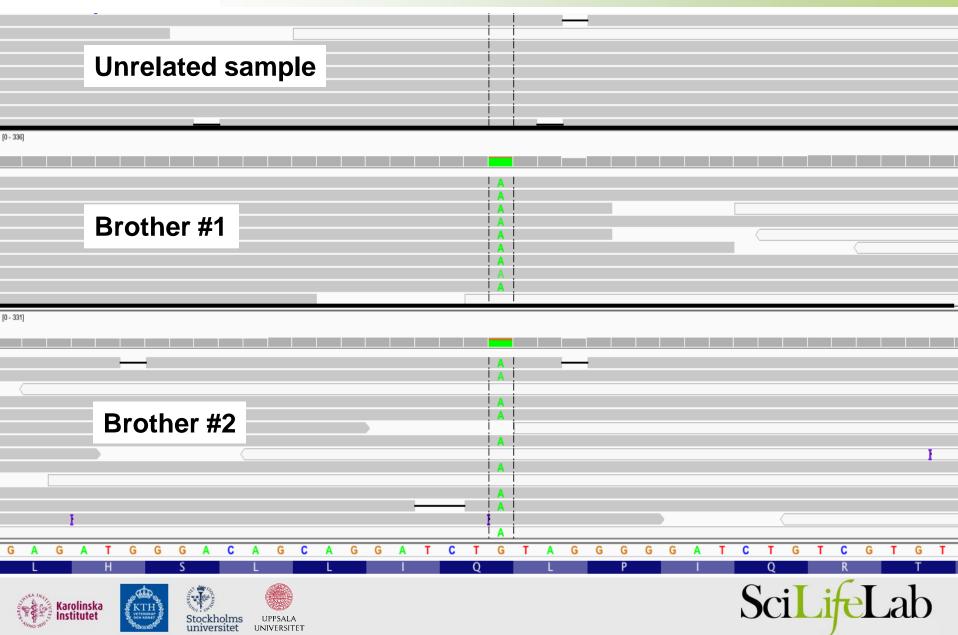
=> Filtering is fast and gives a short candidate list!

STRC - a candidate gene

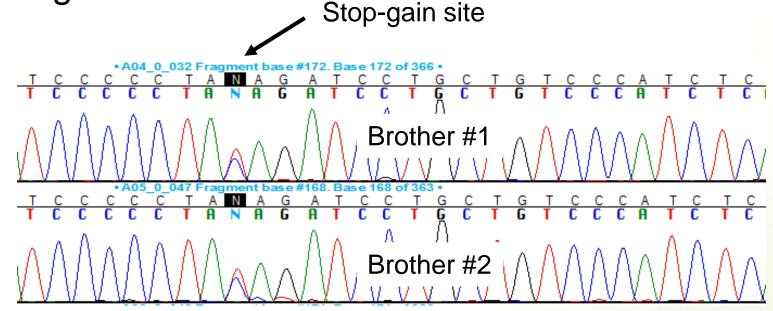
STRC

From Wikipedia, the free encyclopedia

Stereocilin is a protein that in humans is encoded by the STRC gene.^{[1][2][3]}


This gene encodes a protein that is associated with the hair bundle of the sensory hair cells in the inner ear. The hair bundle is composed of stiff microvilli called stereocilia and is involved with mechanoreception of sound waves. This gene is part of a tandem duplication on chromosome 15; the second copy is a pseudogene. Mutations in this gene cause autosomal recessive non-syndromic deafness.^[3]

=> Stop-gain in STRC is likely to cause hearing loss!



IGV visualization: Stop gain in STRC

STRC, validation by Sanger

Sanger validation

- Does not seem to be homozygous..
 - Explanation: difficult to sequence STRC by Sanger
 - Pseudo-gene with very high similarity
- New validation showed mutation is homozygous!!

CanvasDB – some success stories

Solved cases, exome-seq	- Niklas I	Dahl/Joakim Klar	
Neuromuscular disorder	NMD11		
Artrogryfosis	SKD36		
Lipodystrophy	ACR1		
Achondroplasia	ACD2	Success rate	>80% for
Ectodermal dysplasia	ED21		
Achondroplasia	ACD9	recent Proto	n projects!
Ectodermal dysplasia	ED1		
Arythroderma	AV1		and all
Ichthyosis	SD12		1. 18 1
Muscular dystrophy	DMD7		Strand
Neuromuscular disorder	NMD8		and a set of the
Welanders myopathy (D)	W		
Skeletal dysplasia	SKD21		- B
Visceral myopathy (D)	D:5156		
Ataxia telangiectasia	MR67		
Exostosis	SKD13		
Alopecia	AP43		1 1
Epidermolysis bullosa	SD14		- / / /
Hearing loss	D:9652		- B / / .

CanvasDB - Availability

CanvasDB system now freely available on GitHub!

Installation of the CanvasDB system

This section describes how to download and install CanvasDB on your local computer. Make sure that MySQL, R and ANNOVAR are running on your computer before starting the installation.

Step 1. Download code from github

\$ git clone https://github.com/UppsalaGenomeCenter/CanvasDB.git

\$ cd CanvasDB

Step 2. Set the current path to 'rootDir' in canvasDB.R

Next Step: Whole Genome Sequencing

• New instruments at SciLifeLab for human WGS...

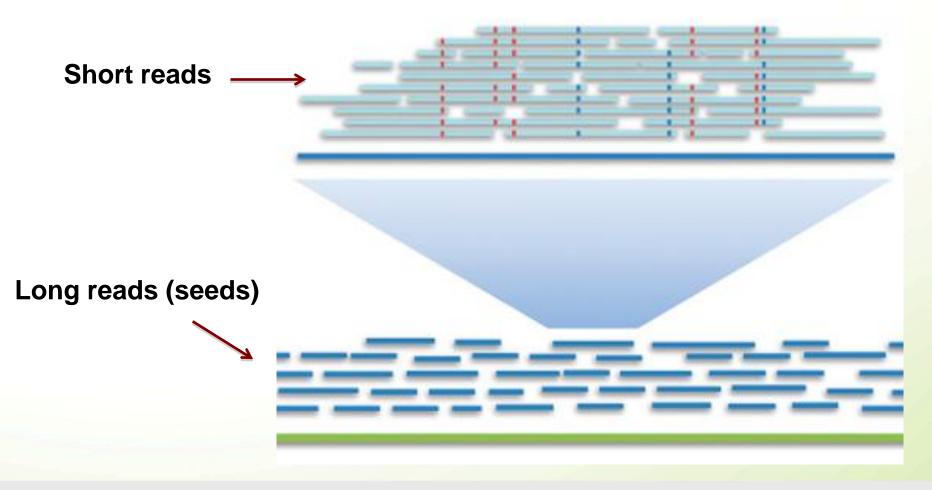
Capacity of HiSeq Xten: 320 whole human genomes/week!!!

More work on pipelines and databases needed!!!

Example II:

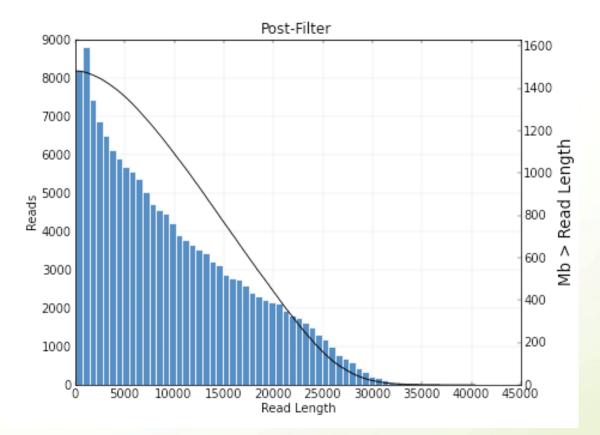
Assembly of genomes using Pacific Biosciences

Genome assembly using NGS


- Short-read de novo assembly by NGS
 - Requires mate-pair sequences
 - Ideally with different insert sizes
 - Complicated analysis
 - Assembly, scaffolding, finishing
 - Maybe even some manual steps
 - => Rather expensive and time consuming
- Long reads really makes a difference!!
 - We can assemble genomes using PacBio data only!

HGAP de novo assembly

• HGAP uses both long and shorter reads



PacBio – Current throughput & read lengths

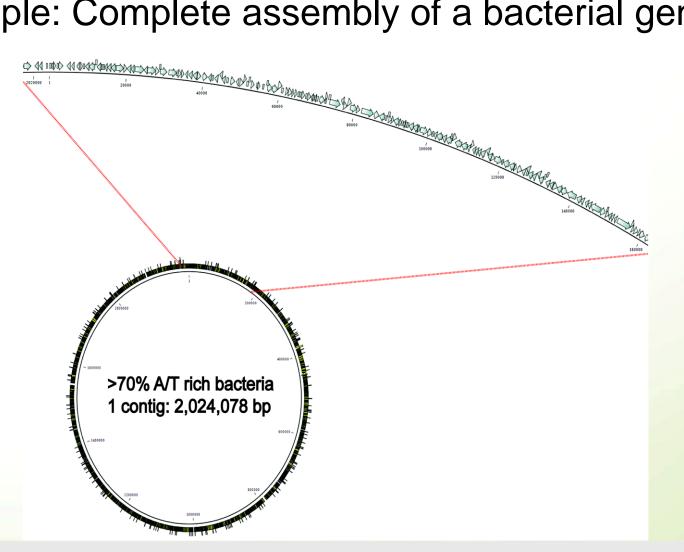
• >10kb average read lengths! (run from April 2014)

~ 1 Gb of sequence from one PacBio SMRT cell

PacBio assembly analysis

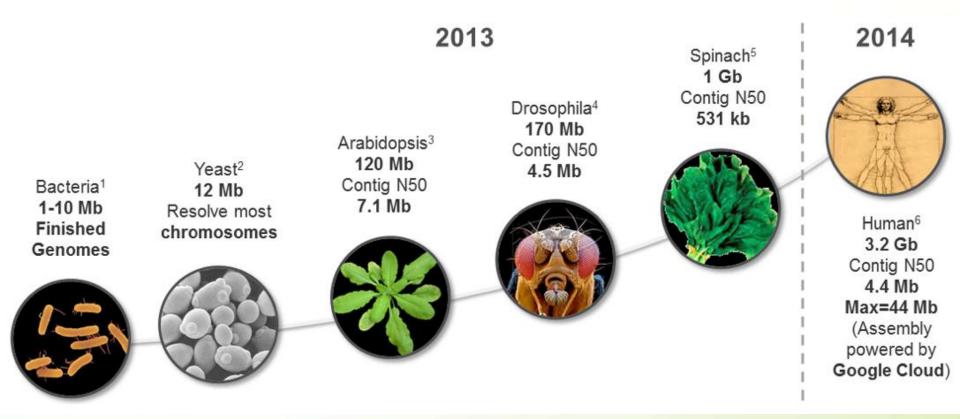
• Simple -- just click a button!!

🗲) 🕲 127.0.0.1:8080/si	nrtportal/	#/Design–J	ob/Details	-of-Job/16497			. ⊂ G	pacbio de novo assembly	Q \$	🗎 🕂 🏠 🚺 🖉 🚍		
Most Visited 👻 🗌 Gett	ing Started	C Save	to Mendele	у								
SMRT® Portal Ho	me Adm	in Tech S	Support Files	s Help About					Welco	me, ugc_admin! Account Lo		
DESIGN JOB					MONITOR J	OBS	S VIEW DATA					
ob Name assembly			Commer	nts				Groups all		···· User ugc_admin		
RS_HGAP_Assem	bly.3		•	Reference [None select	ed]	•						
•••			-									
SMRT Cells Available	(Viewing 1	- 31 of 31)		Search	Go Advanced		SMRT Cells	in Job (Viewing 1 - 1 of 1)			
Sample	Version	User	Groups	Started	Uri		Sample	Version User	Groups	Uri		
Pb9_frax 21	2.0.2		all	2014-02-20T19:28:20+0000	/home/pacbio/[Pb33_1	2.0.2	all	/home/pacbio/DATA/adam/Pb_33		
Pb9_frax 44	2.0.2		all	2014-02-20T19:28:20+0000	/home/pacbio/[
Pb9_ frax 63 Pb33_1	2.0.2		all	2014-02-20T19:28:20+0000	/home/pacbio/[
Pb33_1 Pb33_2	2.0.2		all	2014-02-20T19:28:20+0000 2014-02-20T19:28:20+0000	/home/pacbio/l							
Pb35_2 Pb 33-5	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[/home/pacbio/[
Pb 33-7	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-6	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-3	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-9	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-8	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-4	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-10	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb55_f2rpt	2.1.0		all	2014-05-09T10:48:14+0000	/home/pacbio/[
Pb_46_3_repeat	2.1.0		all	2014-05-09T10:48:14+0000	/home/pacbio/[
Pb55_f2rpt	2.1.0		all	2014-05-09T10:48:14+0000	/home/pacbio/[
Pb_46_9	2.1.0		all	2014-05-09T10:48:14+0000	/home/pacbio/[
Pb_46_10	2.1.0		all	2014-05-09T10:48:14+0000	/home/pacbio/[
Pb46_3	2.1.0		all	2014-05-08T11:08:49+0000	/home/pacbio/[



PacBio assembly, example result

Example: Complete assembly of a bacterial genome



PacBio assembly – recent developments

Also larger genomes can be assembled by PacBio..

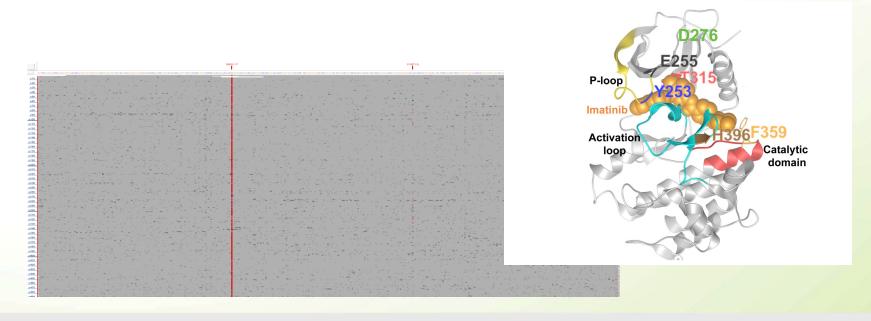
Next step: assembly of large genomes

• A computational challenge!!

WEDNESDAY, FEBRUARY 12, 2014

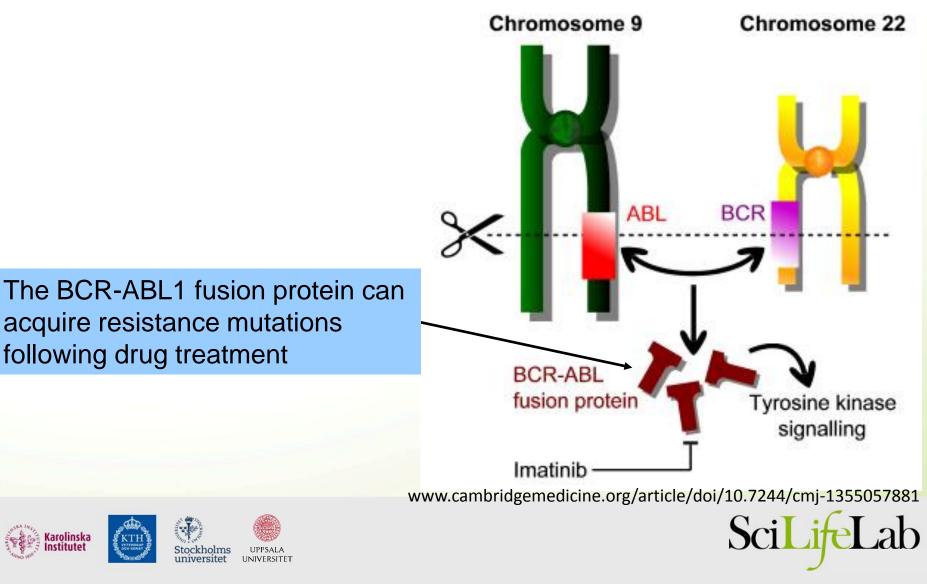
Data Release: ~54x Long-Read Coverage for PacBio-only De Novo Human Genome Assembly

We are pleased to make publicly available a new shotgun sequence dataset of long PacBio® reads from a human DNA sample. We previously released sequence data using Single Molecule, Real-Time (SMRT®) Sequencing of ~10x coverage of this sample, sufficient for reference-based detection of structural variation. Today we expand on that release with additional data that increases the total sequencing coverage to ~54x. This long-read data has enabled the generation of the first *de novo* human genome assembly from PacBio-only sequence reads. Download the 54x long-read coverage dataset. 405,000 CPUh used on Google Cloud!


We need to install such pipelines at UPPNEX!!

Example III:

Clinical sequencing for Leukemia Treatment



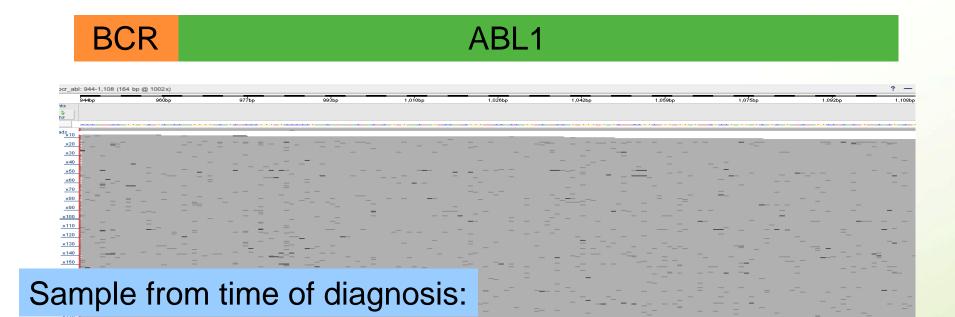
Chronic Myeloid Leukemia

• BCR-ABL1 fusion protein – a CML drug target

BCR-ABL1 workflow – PacBio Sequencing

From sample to results: < 1 week

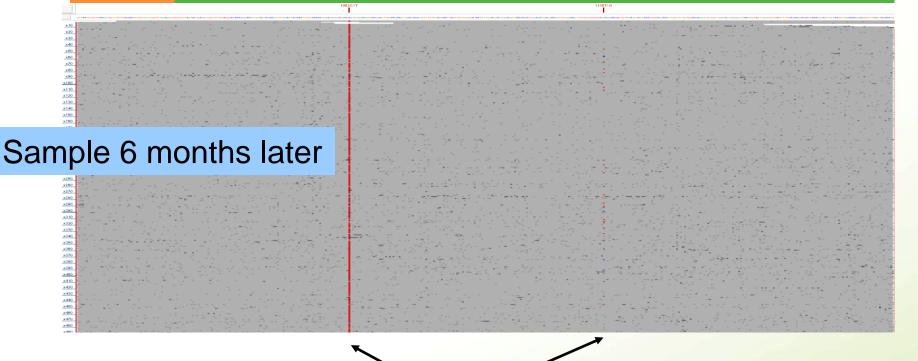
Total RNA cDNA synthesis АААААА BCR-ABL1 1578 bp cDNA amplicon PacBio library PacBio reads Mutation results


1 sample/SMRT cell

Cavelier et al., BMC Cancer, 2015

BCR-ABL1 mutations at diagnosis

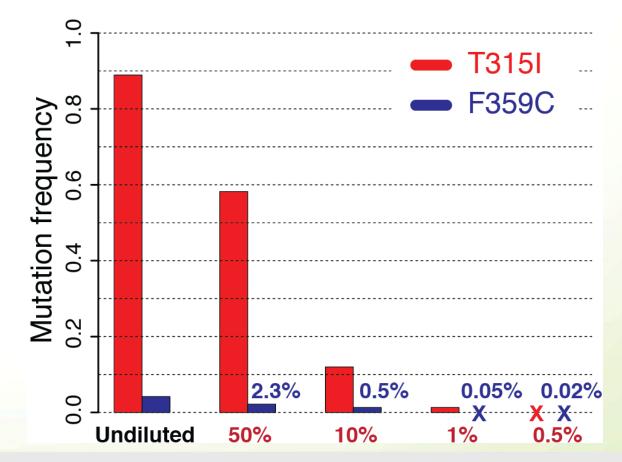
PacBio sequencing generates ~10 000X coverage!


x220 x230 x240 x260 x260 x270 x280 x290 x290 x290 x310

BCR-ABL1 mutations in follow-up sample

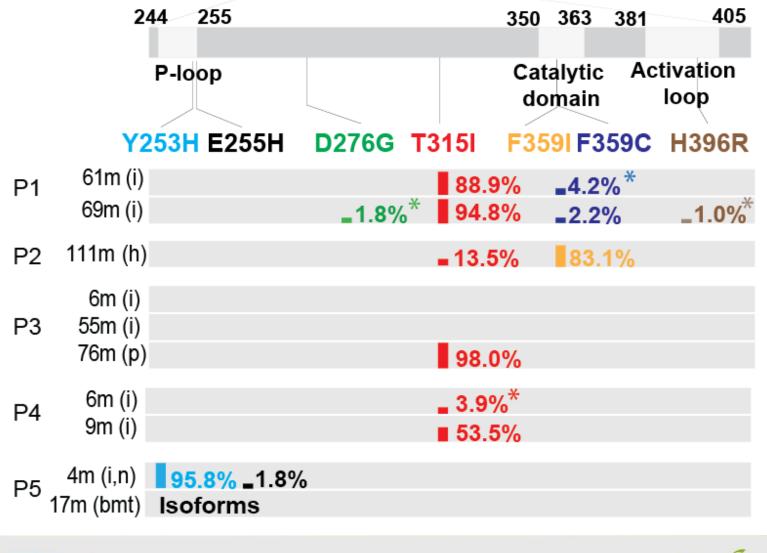
ABL1

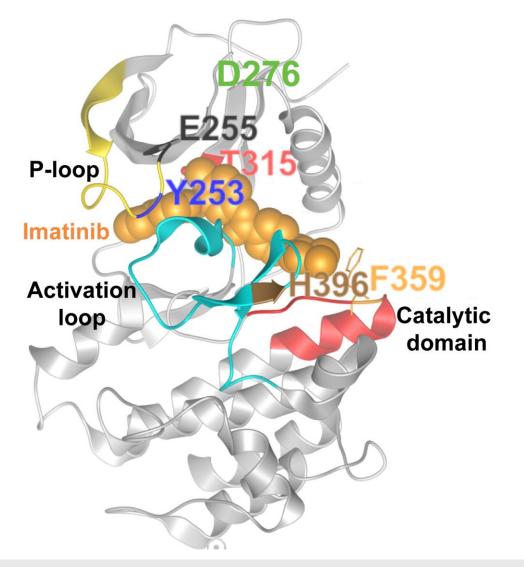
Mutations acquired in fusion transcript. Might require treatment with alternative drug.



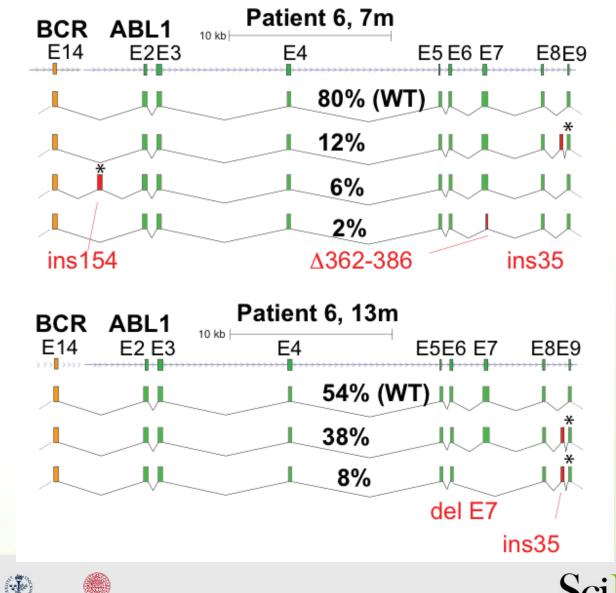
BCR-ABL1 dilution series results

• Mutations down to 1% detected!




Summary of mutations in 5 CML patients

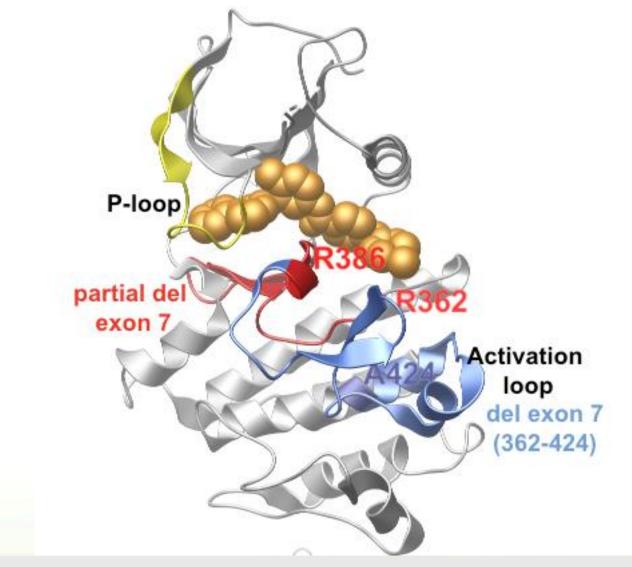
Mutations mapped to protein structure


BCR-ABL1 - Compound mutations

BCR-ABL1 - Multiple isoforms in one individual!

Karolinska Institutet

Stockholms

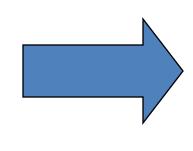

universitet

UPPSALA

UNIVERSITET

SciLifeLab

BCR-ABL1 – Isoforms and protein structure



Next step: A clinical diagnostics pipeline!

Step1. Create CCS reads

DI	ESIGN JOB			MON	ITOF
ob Name		Comments			
Protocol [None selecte	d]	÷ Refe	erence 🚺	lone selected]	-
SMRT Cells Availab	(Viewing 1 - 50 of 62)	Search		Go	Advanc
SMRT Cell ID	Sample	Vi User	Groups	Started	Uri
1005798525500000018230	8820 pb_2	v2	all	2013-10-10T09:45:1	6+0 /ho
1005798525500000018230	8820 pb_2	v2	all	2013-10-10T09:45:1	6+0 /ho
1005798525500000018230	8820 pb_2	v2	all	2013-10-10T09:45:1	6+0 /ho
1005798525500000018230	8820 pb_2	v2	all	2013-10-10T09:45:1	6+0 /ho
1005798525500000018230	8820 pb_4	v2	all	2013-10-09T16:37:3	4+0 /ho
1005798525500000018230	8820 pb_4	v2	all	2013-10-09T16:37:3	4+0 /ho
	0000 -b 0.0	v2	all	2013-10-09T16:37:3	4+0 /ho
1005798525500000018230	5620/pb_3-2				
1005798525500000018230 1005798525500000018230		v2	all	2013-10-09T16:37:3	4+0/no
	8820 pb_3-1		all all	2013-10-09T16:37:3 2013-09-12T13:25:4	
1005798525500000018230	8820 pb_3-1 8820 pb_1-8	v2			8+0 /ho
1005798525500000018230 1005797325500000018230	8820 pb_3-1 8820 pb_1-8 8820 pb_1-7	v2 v2	all	2013-09-12T13:25:4	8+0 /ho 8+0 /ho

Step3. Upload to result server

Step2. Run mutation analysis

E255K	CCAGTACGGG [G/A]AGGTGTACGA	7883	7143	0.475	8516	7669	0.474	16399	14812	0.475	positive
F359V	GAAGAAAAAC [T/G]TCATCCACAG	11646	3794	0.246	12231	3968	0.245	23877	7762	0.245	positive
L384M	TGATTTTGGC [C/A]TGAGCAGGTT	12704	1679	0.117	13545	1734	0.113	26249	3413	0.115	positive
M244V	GGACATCACC [A/G]TGAAGCACAA	14209	1550	0.098	15194	1695	0.1	29403	3245	0.099	positive
T315I	TATATCATCA [C/T]TGAGTTCATG	15392	793	0.049	16291	854	0.05	31683	1647	0.049	positive
L387M	CCTGAGCAGG [T/A]TGATGACAGG	13069	321	0.024	13977	403	0.028	27046	724	0.026	positive
K247R	ATGAAGCACA [A/G]GCTGGGCGGG	13901	14	0.001	14805		0.001	28706		0.001	negative
L248V	GAAGCACAAG [C/G]TGGGCGGGGG	13708			14823			28531			negative
G250E	AAGCTGGGCG [G/A]GGGCCAGTAC	13330			14453			27783			negative
Q252H	GCGGGGGCCA [G/T]TACGGGGAGG	6895			7489			14384			negative
Y253H	CGGGGGCCAG [T/C]ACGGGGAGGT	6877			7439			14316			negative
Y253F	GGGGGCCAGT [A/T]CGGGGAGGTG	7146			7721			14867			negative
E255V	CAGTACGGGG [A/T]GGTGTACGAG	7932			8548			16480			negative
L273M	CGTGAAGACC [T/A]TGAAGGAGGA	15642			16694			32336			negative
D276N	CTTGAAGGAG [G/A]ACACCATGGA	15772			16786		0.001	32558	14		negative
D276G	TTGAAGGAGG [A/G]CACCATGGAG	15840	40	0.003	16855	37	0.002	32695		0.002	negative
T277P	GAAGGAGGAC [A/G]CCATGGAGGT	15786	10	0.001	16815	26	0.002	32601	36	0.001	negative
T277S	GAAGGAGGAC [A/T]CCATGGAGGT	15786			16815			32601			negative
T277N	AAGGAGGACA FC/A TCATGGAGGTG	15899	2	0	16939	2	0	32838	4	0	neaative

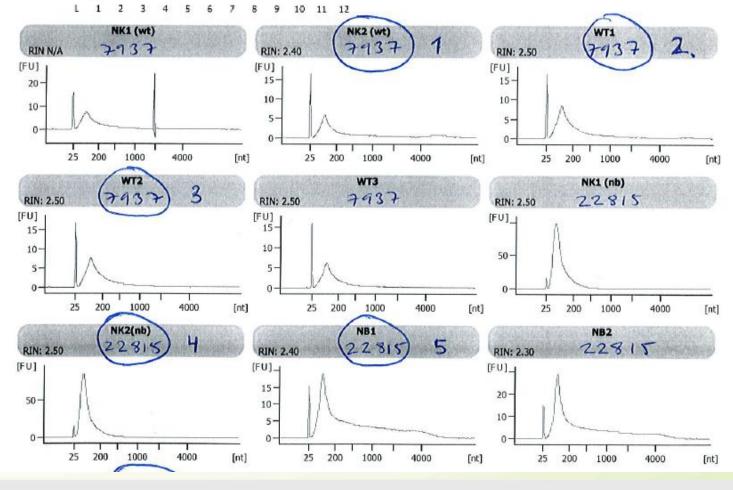
Reporting system for mutation results

Sample	ple ID Run ID Date (yyyy-mm-dd)																	
Mutation	n									equenced								
Search Reset																		
Details	Sample ID	Run ID	M244V	Ү253 Н	Y253H[E255V]	E255K	E255V	D276G	T315I	F359C	F359V	F359I	L384M	L387M	H396R	rs222798	Seq	Date
1	R3740	pb_003_1	9.9			47.5			4.9		24.5		11.5	2.6			1	2014-12-0
2	R7394	pb_003_2							91.7	4.7								2014-12-0
3	R7840	pb_014_3						2.0	96.8	2.1					1.2	39.7		2014-12-0
4	R9171	pb_014_4	100.0															2014-12-0
5	R8484	pb_014_5	100.0						14.4			85.4						2014-12-0
6	R4419	pb_015_1														69.3		2014-12-0
7	R4765	pb_015_2																2014-12-0
8	R7715	pb_015_3	0.6						99.9									2014-12-0
9	R9452	pb_015_4							99.9									2014-12-0
10	R5208	pb_033_1		99.8														2014-12-0

Collaboration with Wesley Schaal & Ola Spjuth, UPPNEX/Uppsala Univ

Ion Torrent – News and updates

- AmpliSeq Human Whole Transcriptome panel
 - Expression levels for ~20.000 human genes
 - 10-100 ng of input is enough!
 - Works on FFPE samples!!
 - Cheaper than conventional RNA-seq
 - Simple bioinformatics
- HiQ chemistry
 - Improves accuracy in sequencing
 - Reduces indel error rates


۲	0 0 🗋 R_	2014_10_0	7_13_31_43_u	ser_PR5-44-u	p_109_111_A.	
\diamond	A	В	C	D	E	
1	Gene	Target	IonXpress_001	IonXpress_002	IonXpress_010	ŀ
2	SEC24B-AS1	AMPL377418	0.96	1.568	1.369	
3	A1BG	AMPL174256	0.107	0	0.152	
4	A1CF	AMPL365934	0	0	0	
5	GGACT	AMPL173676	0.213	0.922	1.065	
6	A2M	AMPL1384	77.965	110.653	0	
7	A2ML1	AMPL359429	132.679	160.723	0	
8	A2MP1	AMPL376317	0.213	0.184	0.076	
9	A4GALT	AMPL318887	12.052	26.188	0.076	
10	A4GNT	AMPL323789	0	0	0	
11	AAAS	AMPL336793	11.412	11.987	5.324	
12	AACS	AMPL369958	48.635	71.74	5.857	
13	AADAC	AMPL582558	31.89	28.216	0	
14	AADACL2	AMPL223111	100.683	163.858	0	
15	AADACL3	AMPL444945	0	0	0	
16	AADACL4	AMPL612401	0	0	0	
17	AADAT	AMPL326139	1.92	2.305	0	
18	AAGAB	AMPL144320	51.088	38.175	14.984	
19	AAK1	AMPL259042	1.6	1.014	7.835	
20	AAMP	AMPL346680	79.885	69.066	41.454	
21	AANAT	AMPL327561	0	0	0	
22	AARS	AMPL107840	45.755	46.474	8.595	
23	AARS2	AMPL314692	7.786	10.696	10.192	
24	PTGES3L-AAR	AMPL466342	0.213	0	0	
25	AASDH	AMPL214471	1.387	4.242	0.532	
26	AASDHPPT	AMPL250926	31.037	33.565	8.747	
27	AASS	AMPL293263	2.666	6.363	0.456	
28	AATE	AMPL125583	75.405	63.349	111.28	
29	AATK	AMPL554291	1.6	3.227	37.423	
30	ABAT	AMPL338537	2.666	5.533	10.192	
31	ABCA1	AMPL283855	40.742	46.659	31.87	
32	ABCA10	AMPL185495	9.279	23.79	0.685	
33	ABCA12	AMPL158582	306.207	231.172	0	
34	ABCA13	AMPL344817	1.173	1.568	1.217	
35	ABCA17P	AMPL198774	0	0.184	0	
36	ABCA2	AMPL809904	29.437	43.8	45.562	
37	ABCA3	AMPI 507627	6.079	16.782	7.378	
		< + + <u>R</u>	2014_10_07_13_	31_43_user_PR5		

Ion Torrent – RNA-Seq on FFPE

Good results obtained for most of these samples!

PacBio – News and updates


- HLA typing
 - Full length sequencing of HLA genes
 - Multiplexing of several individuals in one run
- Fast track clinical samples
 - Preparing workflows for rapid sequencing
 - Organ transplantation, diagnostics, outbreaks, ...
- New chemistry and active loading of SMRT cells
 - Improved quality, longer reads
 - Increased throughput (early 2015)

Thank you!

SciLifeLab

SciLifeLab