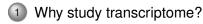
RNA-seq data processing and analyses RNA sequencing, transcriptome and expression quantification


Olga Dethlefsen

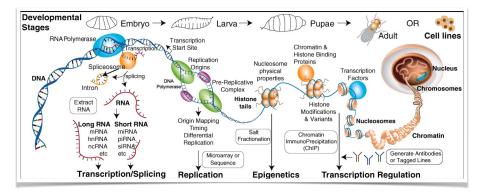
NBIS, Stockholm University

December 2016

Outline

- 2 Overview of RNA-seq work flow
- Understanding sequencing output
- 4 RNA-seq data analysis
 - Mapping based approach
 - Transcriptome assembly

Exercises



5

Why study transcriptome?

A complex view of central dogma of molecular biology

Advantages and Applications

Transcriptomes are

- dynamic, that is not the same over tissues and time points
- directly derived from functional genomics elements, mostly protein-coding genes, providing a useful functionally relevant subset of the genome, that is smaller sequence space

Transcriptomes enable

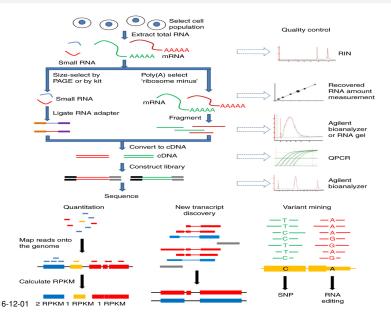
- to investigate differences in gene expression patterns
- to distinguish different isoforms and allelic expression
- to explore gene functions
- to analyze single nucleotide variants, fusion genes and co-expression networks

Advantages and Applications

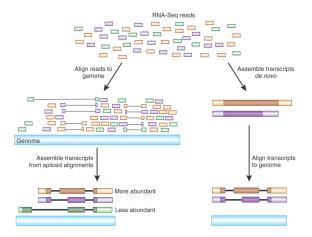
Transcriptomes can also help to

- understand host-pathogen immune interactions and predict resistance to specific antibiotics
- understand tumour classification and progression by determining which variants are expressed in cancer samples
- understand tumour heterogeneity and clonal evolution (scRNA-seq)
- understand complex tissues, e.g. neural (scRNA-seq)
- study other biological questions in which cell-specific changes in transcriptome are important, e.g. cell type identification, heterogeneity of cell responses, stochasticity of gene expression etc.

Overview of RNA-seq work flow

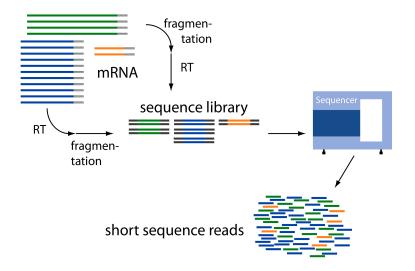


High level work flow overview


- Experimental design (biology, medicine, statistics)
- RNA extraction (biology, biotechnology)
- Library preparation (biology, biotechnology)
- High throughput sequencing (engineering, biology, chemistry, biotechnology, bioinformatics)
- Data processing (bioinformatics)
- Data analysis (bioinformatics & biostatistics)

More detailed work flow overview

Two main bioinformatics routes



Understanding sequencing output

NGS data

.fastq Machine output

000	🛄 fastq — less -	- 195×69
01WI-ST0066_0110:5:1101:1264:2090#GATCAG/1		
AGGCACTCCCTGCASGTGTTGGACCACCTGGCTGASCCACAGCGTCGCTTCCTGC	IGCCA6G6CCTC6GAGAG66GT6GCT6T66A6ACACT6T66GA6CA	
+HWI-ST0865_0110:5:1101:1264:2090#GATCAG/1		
^_P\`ccceeceeeelblbeedaae_fdddde_cfhheedfeeh`aeadd`d	Ibaccc\ [TKT\]_\20Tha[W[hhaWihiaXhXhi_Y]ha8888	
0HWI-ST8865 0110:5:1101:1418:2201#GATCA6/1		
TCTTTATTGGCATCAGGCATCACCACGACGATGGTTCTTGGCTCCCATGTTGGCCT	GACTCTCTTGCCATTCCGGGATCCTCTCTCATAGATGTACTCGC	
+HWI-ST0865_0110:5:1101:1418:2201#GATCAG/1		
P`ccceegge]eghhhhdfhhhhhhhhhhhfhhefghffffhffhhfheg^eeff	fegf'fghhhffhhggadcX['bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb	
@NWI-ST0066_0110:5:1101:1561:2232#GATCAG/1		
CCGAAACCCCGAAAGCACCCCAAAATCCCTGTGGGGAACCCCGAAAATCCCGAAA	TTACCCCAAAATACCTGTGGGATACCCTGAAAACCCGAAAGCACC	
+HWI-ST0866_0110:5:1101:1561:2232#GATCA6/1		
IVJ\'`\eleef@pafagfffagfd'Rclcac'a_ef[a_N'laced]\X]2	R6YYYXa*_``bb YYYb988888888888888888888888888888888	
@HWI-ST0865_0110:5:1101:1675:2246#GATCA6/1		
OCTCARGTCCCGGAGGGGGGGGGGGGGGGGGGGGGGGGGGG	AGTGTAADCACCTGCAAACAGCTGCCAGGCAGGGAGCTGTGACTT	
+HWI-ST0866_0110:5:1101:1675:2246#GATCAG/1		
3\'accccec [eagag'gggedbffhhffgfhhhhheaaefaghhhfdghhhd	fd`ddgbd]_^abbbb^ababbGXY_[aa^`aOOT[`bbGYYS	
@MWI-ST0065_0110:5:1101:1752:2075#GATCAG/1		
CAGENGETETGGGEACECTGTGCEAGGGENTGNEEACECTEEEAGGAATTE	TTECCNATATETAACCEAAATTTETTECCONGTAGGASCAGGATG	
+HWI-ST0865_0110:5:1101:1752:2075#GATCAG/1		
Z_Ia8000'ccace_d_Y'a_Xdfecc1f8PyB0YacedeZeVRbWVW_\bc5\	odde"V8KKT*accab1GT\Z_YY""_1YG8KKWW01"_W*[W_R	
@HWI-ST0865_0110:5:1101:1888:2141#GATCA6/1		
CAGATGAOGACTTTTGCTCCAAATGOGAAAAGGAGAAAACCTCAGTCCGTAGAGAT	CTCCCAGAGATAGTCCTAAAGATGAAGATGAAGACCCTTTG	
+HWI-ST0865_0110:5:1101:1888:2141#GATCAG/1		
abbeeeegggggiihiiiiiiiiiiiiiiiiiiiiiiiiii	hiihiihichifggdgeebaceebbddbbdcecdcccbccbccc	
@MWI-ST0065_0110:5:1101:1930:2172#GATCAG/1		
ATCCANGTTANANCAGAGGCCTGTGACAGACTCTTGGCCCATCGTGTTGATACTA	MATGAAAGGAAACAAAGTGAATGAAGTACTGAATAGATTACACT	
+HWI-ST0865_0110:5:1101:1930:2172#GATCAG/1		
_^_ahcccepcgphhgZclghhchegggdh_EdIdefcdfdhZh0XWa0hadghW	<pre>kaff_H_cbdbbd\dbddv*_ZRMHHZGU2_b_YRTGTT3'b1</pre>	
@HWI-ST0865_0110:5:1101:1945:2183#GATCA6/1		
CTCACGATGGTCCCCAGGCTGTCCACAGTTGCCACACACTGATAATATCCTTCAT	ADSTITATTATGCTTDSAATGCACCACACTGTTAATTAATAAAS	
+HWI-ST0866_0110:5:1101:1945:2183#GATCAG/1		
^ccc\ccY'^se'Z_'bR'b]fs]dec^ceeeffc^fcdceXc]cehehsebe	fd'eW\\b]bebeeedde'R_as_c]b\bssZ'sccdc[']s's	
@MWI-ST0065_0110:5:1101:1920:2205#GATCAG/1		
GCCAGTACAGCTGTAGTAGTCTGTCCTTCCCATCCGTGCCCATGTGACACAGCAG	STTCACAGCATGGTGACCAGTTTGAAGCTTCCTACCTCTGTGGTA	
+HWI-ST0865_0110:5:1101:1920:2205#GATCAG/1		
bbbeeeegfggghfhfhhihiliiihiiliiiiighiiiiiiiiiii	<pre>sghiiiiiiihhhbdghggggggeeceeebddcddcccccbcccc</pre>	
@HWI-ST0865_0110:5:1101:2095:2167#GATCA6/1		
GTTCAGACAAGTTCGATCTCTTGTGCATCGACTGTGCTGGATGATAGTTTTTCAG	IGAGTATTATGGTTAGTAGATATAGTACCADGCTGCAAATADCTA	
+HWI-ST0866_0110:5:1101:2005:2167#GATCAG/1		
a_P\cceegggggiighihiiiighhiiiihiiiiiiihihiiiehhiiifh	hibfaedfhiiifghihdgeeddgeeeeeddc_bbccccbb	
@MWI-ST0065_0110:5:1101:2494:2131#GATCAG/1		
CTCGAAATCCAGGGCAACGTAGCACAGCTTCTCCTTGATGTCACGCACAATTTCT	TCTCAGCTGTGGTGGTGGAGCTGTAGCCTCTCTCTGTCAGGATC	
+HWI-ST0865_0110:5:1101:2494:2131#GATCA6/1		
_aaeceeegggggdfgfihghffhhhiiihffgiiiiiihhhfiigghdgdhff	hiiifdhihd'hbVhaabbbdc_1bZ'bcccccccb1'bcc	
@HWI-ST0866_0110:5:1101:2424:2217#GATCAG/1		
TAACASTECCCCTGSTATGAAATGGCACCTTGSTTACACTGAGGGAGGGGTGAGG	ITACAGGGAGTAATTTTCATGTGTAACTGGGGTTAAAAAAAA	
+HWI-ST0065_0110:5:1101:2424:2217#GATCAG/1		
_bPaceeegfggcghfgfhhiiiiiiffh_fghghhfhhhgfghfcghhiT_bdd	iddeeeeaac'bbcccb'cb'cbbc'ccbcccaacbbbbcaaccc	
@MWI-ST0066_0110:5:1101:2405:2220#GATCAG/1		
CCTGGATGGTGGGCTGATCAACTTTGAGAAGAGAAGGAAG	SEGENERTEARGETECTECAGTEGGEETECARCARCTACAGETTE	
+HWI-ST0865_0110:5:1101:2485:2220#GATCAG/1		
_bbeereegegggiililililililihidghhihililililigghhhhihilil	Lihigeedddddcccccccbccccccacccccccccbbccc	
@HWI-ST0865_0110:5:1101:2476:2244#GATCAG/1		
CAGTACTETTTGTACCGCTCATCTGCATCTCCAAACACTTTGTACCTGCTGCCTT	ITATTTTGTATGTTTACCTGTGTCAGAGAGTCGCCAAGTTTGTTC	
+HWI-ST0065_0110:5:1101:2476:2244#GATCAG/1		
abbeeeefgggghifiihiiihigaghefhhdgheghhhhf*afgffhfhiiih	idfhhihihhiiggbg`gfdg`bdddeade`]`_Z"Y[]bcbccb	
@HWI-ST0066_0110:5:1101:2502:2109#GATCAG/1		
AACAAAACGGGCTGTTTTAGGACCCTTGGTCCCAAGGGGTAATGGCCCTCAGCAC	CACTATECETGETETECASGGETETETAGSGATTTAGTGETGAT	
+HWI-ST0865_0110:5:1101:2502:2189#GATCA6/1		
_b_ccecegggggiiiiihiiiiiiiiiiiiiiiiiiiiiiii	vgggeeee_6ddcddccccbcaccccccbcbccccccdccc	
@HWI-ST0865_0110:5:1101:2517:2226#GATCAG/1		
TATCAATTTGCGCTTGATTACTAGTGCTACCTTCCCATACATTGCAGAGAGCGCG	IGTECATAGTGTATGGTACAGTACAACCAGCAECACAGCTTAGAG	
+HWI-ST0065_0110:5:1101:2517:2226#GATCAG/1		
P`^ceeggff`fhiiiiighfhgghihghhhghhdfdffhagffhghcddg	ggggdeeea^^acddZ_bRU}'}bcZZ['ab['^c_aaccccbb	
@MWI-ST0066_0110:5:1101:2659:2245#GATCAG/1		
TGCCTATGGAATTACGTTAATTTACACAAACAAATTCCATATTAGCTTTAAAAAA	TAAACCTACTTCTAACTAGAAGTGAAAGAAGTTTAAAAGTGCTGC	
+HWI-ST0865_0110:5:1101:2659:2245#GATCA6/1		
"YYccaccl"ae*affhhhbc*dgeghfeeafg'dfhhgflfhhSYcgfdlcae_	fghhRW\eb1ffhZV\`d1dR\V^2_dced`b62`b`bbZ11_Y`	

.fastq Machine output

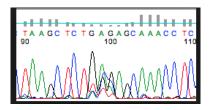
- Line 1 begins with a '@' character and is followed by a sequence identifier and an optional description
- Line 2 is the raw sequence letters
- Line 3 begins with a '+' character and is optionally followed by the same sequence identifier (and any description) again
- Line 4 encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence

.fastq

@MISEQ:233:00000000-AGJP2:1:1101:15260:1358 CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT

+

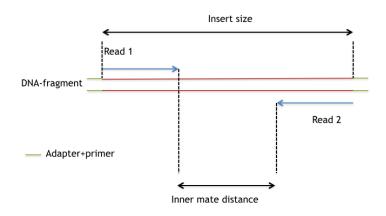
BBBBBFFFFFFGGGGGGGGGGGGFFFHGHHGFFHHHHAG


Sequence quality

Phred Quality Score

Q = -10 x log P

• where:

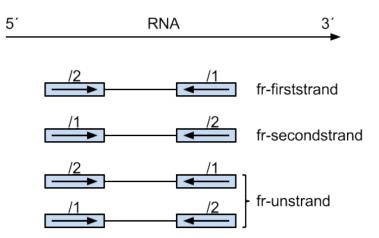

- P, probability of base calling being incorrect
- High Q = high probability of the base being correct

- A Phred quality score of 10 to a base, means that the base is called incorrectly in 1 out of 10 times.
- A Phred quality score of 20 to a base, means that the base is called incorrectly in 1 out of 100 times.
- A Phred quality score of 30 to a base, means that the base is called incorrectly in 1 out of 1000 times.
- etc.

Paired-end (PE) reads

Paired-end (PE) reads

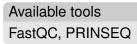
File format


- Two files are created
- The order in files identical and naming of reads are the same with the exception of the end
- The way of naming reads are changing over time so the read names depend on software version

@61DFRAAXX100204:1:100:10494:3070/2
ATCCAAGTTAAAACAGAGGCCTGTGACAGACTCTTGGCCCATCGTGTTGATA
+

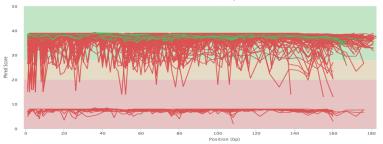
_^_a^cccegcgghhgZc`ghhc^egggd^_[d]defcdfd^Z^OXWaQ^ad

Strandness



RNA-seq data analysis Mapping based approach

Quality control of raw reads



Raw reads filtering and trimming

Mean Quality Scores

- filtering reads for quality score, e.g. with avg. quality below 20 defined within 4-base wide sliding window
- filtering reads for read length, e.g. reads shorter than 36 bases
- removing artificial sequences, e.g. adapters

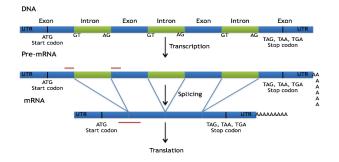
Available tools

TRIMMOMATIC, FastX, PRINSEQ, Cutadapt

BS 2016-12-01

Reference genome and annotations

.fasta (download reference genome FASTA file)

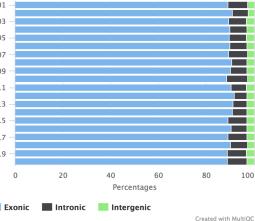

.gtf (download the corresponding genome annotation in GTF or GFF)

#!genome-build GRCm38.p4 #!genome-version GRCm38 #!genome-date 2012-01 #!genome-build-accession NCBI:GCA 000001635.6 #!genebuild-last-updated 2015-07 havana gene 3073253 3074322 . gene id "ENSMUSG00000102693"; gene version "1"; gene name "493340 1J01Rik"; gene source "havana"; gene biotype "TEC"; havana gene "OTTMUSG00000049935"; havana gene version "1"; havana transcript 3073253 3074322 . . gene id "ENSMUSG00000102693"; gene version "1"; transcrip t_id "ENSMUST00000193812"; transcript_version "1"; gene_name "4933401J01Rik"; gene_source "havana": gene biotype "TEC": havana ge ne "OTTMUSG00000049935"; havana gene version "1"; transcript name "4933401J01Rik-001"; transcript source "havana"; transcript bio type "TEC"; havana transcript "OTTMUST00000127109"; havana transcript version "1"; tag "basic"; transcript support level "NA";

Mapping reads to the genome

- Choose adequate aligner
- Use annotations and allow for spliced mapping

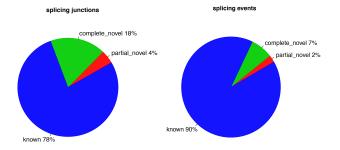
Available tools Star, Tophat, Subread and many more...



Mapping reads to the genome: QC

Reads should mostly map to known genes

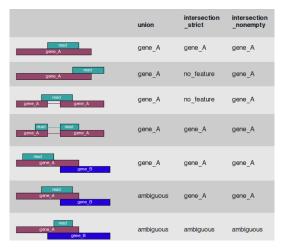
Genomic Origin


4_151125_BC827AANXX_P2761_201 -4_151125_BC827AANXX_P2761_203 -4_151125_BC827AANXX_P2761_205 -4_151125_BC827AANXX_P2761_207 -5_151125_BC827AANXX_P2761_209 -5_151125_BC827AANXX_P2761_211 -5_151125_BC827AANXX_P2761_213 -6_151125_BC827AANXX_P2761_215 -6_151125_BC827AANXX_P2761_217 -6_151125_BC827AANXX_P2761_217 -6_151125_BC827AANXX_P2761_219 -

Mapping reads to the genome: QC

Most splice event should be known and canonical (GU-AG)

Available tools RseQC, Picard, QualiMap


Counting reads

Available tools HTSeq, featureCounts, R

Counting reads

from: http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

Counting reads

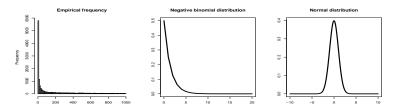
		1 Jul 0															
- 4	A	В	C	D	E	F	G	H	1		K	L	M	N	0	P	Q
	Transcript	P1822_1	P1822_2	P1822_3	P1822_4	P1822_5	P1822_6	P1822_7	P1822_8	P1822_9	P1822_10	P1822_11	P1822_12	P1822_13	P1822_14	P1822_15	P1822_16
	ENSMUSG00000102693	0) 0	0	0	0	0	0	0) 0	0	0	0	0	0	0	0
	ENSMUSG0000088000	0) 0	0	0	0	0	0	0) 0	0	0	0	0	0	0	0
	ENSMUSG00000103265	0) 0	1	0	0	0	0	C) 0	0	0	0	0	0	0	0
	ENSMUSG00000103922	7	7	7	4	1	12	3	6	14	3	9	3	9	7	9	7
33	ENSMUSG0000033845	972	860		1085		1009		1143		1059	970	1147	801	837	1042	927
34	ENSMUSG00000102275	0) 0	0	0	0	0	0	0) 0	0	0	0	0	0	0	0
35	ENSMUSG0000025903	0) 0	0	0	0	0	0	0) 0	0	0	0	0	0	0	0
36	ENSMUSG00000104217	16			16		17				5	12		8	9	9	12
37	ENSMUSG0000033813	2560	2581	2937	3904	2975	3100		3417		2801	2266		2491	2578	2554	2806
38	ENSMUSG0000062588	3	1 1	1	1	0	1	. 0	3	1 3	0	4	0	2	1	. 0	0
39	ENSMUSG00000103280	1	. 0	0	1	0	0	0	C) 0	0	1	0	1	0	0	0
40	ENSMUSG0000002459	7	10	5	7	4	6	3	8	2	5	7	8	1	5	4	1
	ENSMUSG0000091305	0) 0	0	0	0	0	0	0) 0	0	0	0	0	0	0	0
	ENSMUSG00000102653	0) 0	0	0	0	0	0	0) 0	0	0	0	0	0	0	0
43	ENSMUSG0000085623	0) 0	0	0	0	0	0	1	. 0	0	0	0	0	0	0	0
44	ENSMUSG0000091665	0) 0	0	0	0	0	0	C) 0	0	0	0	0	0	0	0
45	ENSMUSG0000033793	3682		4414	5978		4102		4250		4962		5694	3565	3757	3849	4094
46	ENSMUSG00000104352	0) 0	0	0	0	0	0	C) 0	0	0	0	0	0	0	0
47	ENSMUSG00000104046	0) 0	0	0	0	0	0	0) 1	0	0	0	0	0	0	0
48	ENSMUSG00000102907	0) 0	0	0	0	0	0	0) 0	0	0	0	0	0	0	0
49	ENSMUSG0000025905	0) 0	0	0	0	0	0	0) 0	0	0	0	0	1	0	0
50	ENSMUSG00000103936	0) 0	0	0	0	0	0	0) 0	0	0	0	0	0	0	0
	ENSMUSG0000093015	0) 0	0	0	0	0	0	C) 0	0	0	0	0	0	0	0
	ENSMUSG00000103519	0) 0	0	0	0	0	0	0) 0	0	0	0	0	0	0	0
	ENSMUSG0000033774	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
54	ENSMUSG00000103090	0) 0	0	0	0	0	0	c) 0	0	0	0	0	0	0	0
55	ENSMUSG0000025907	1816		2088	2820		2236		2727			2813		2410	2739		2745
56	ENSMUSG0000090031	43			73				96			98		76	93		
57	ENGLANG CONTRACTOR															^	e

Available tools HTSeq, featureCounts, R

Normalization: from counts to gene expression

RPKM & FPKM

- Reads or Fragments Per Kilobase per Milion
- Correct for: differences in sequencing depth and transcript length


Other

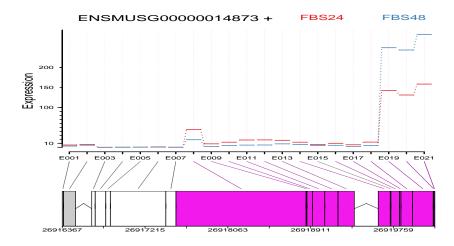
- TMM: correct for differences in transcript pool composition
- TPM: correct for transcript length distribution in RNA pool
- Voom: removing dependence of variance on the mean

Differential expression

- Reads counts do not follow normal distribution
- Typically low number of replicates or samples per group
- Recommend to use statistical packages prepared specifically for the statistical analyses of count data

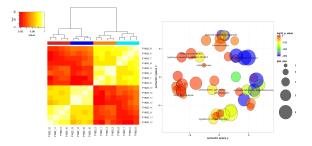
Available tools Cuffdiff, edgeR (R), limma (R), DESeq (R)

Mapping based approach


Differential expression

-	A	В	C	D	E		G	H	1	J
1	ensembl_gene_id	ensembl_transcript_id	chromosome_name	mgi_symbol	description	logFC	logCPM	LR	PValue	FDR
2	ENSMUSG0000028328	ENSMUST00000107773	4	Tmod1	tropomodulin 1 [Source:MGI Symbol;Acc:MGI:98775]	1.971089	5.958225	581.2916	1.96E-128	2.79E-124
3	ENSMUSG0000066705	ENSMUST0000085939	9	Fxyd6	FXYD domain-containing ion transport regulator 6 [Source:MGI Symbol;Acc	3.18062	5.916499	553.8787	1.80E-122	1.28E-118
4	ENSMUSG0000049112	ENSMUST0000053306	6	Oxtr	oxytocin receptor [Source:MGI Symbol;Acc:MGI:109147]	3.820952	3.423774	375.1689	1.40E-83	6.65E-80
5	ENSMUSG0000017446	ENSMUST00000124861	11	C1qtnf1	C1q and tumor necrosis factor related protein 1 [Source:MGI Symbol;Acc:]	1.484213	7.145099	345.7577	3.56E-77	1.26E-73
6	ENSMUSG0000029123	ENSMUST0000094836	5	Stk32b	serine/threonine kinase 32B [Source:MGI Symbol;Acc:MGI:1927552]	3.453001	2.321613	338.7155	1.22E-75	3.46E-72
7	ENSMUSG0000009378	ENSMUST0000009522	19	Slc16a12	solute carrier family 16 (monocarboxylic acid transporters), member 12 [Sc	4.173029	3.89466	335.706	5.50E-75	1.30E-71
8	ENSMUSG0000025355	ENSMUST0000026411	10	Mmp19	matrix metallopeptidase 19 [Source:MGI Symbol;Acc:MGI:1927899]	1.940915	8.973932	328.4969	2.04E-73	4.15E-70
9	ENSMUSG0000029671	ENSMUST00000128245	6	Wnt16	wingless-type MMTV integration site family, member 16 [Source:MGI Sym]	2.339149	5.673738	315.6779	1.27E-70	2.25E-67
10	ENSMUSG0000042190	ENSMUST00000047936	5	Cmklr1	chemokine-like receptor 1 [Source:MGI Symbol;Acc:MGI:109603]	2.518748	3.540638	305.0157	2.66E-68	4.20E-65
11	ENSMUSG0000028035	ENSMUST00000134701	3	Dnajb4	DnaJ (Hsp40) homolog, subfamily B, member 4 [Source:MGI Symbol;Acc:M	1.417856	7.292192	297.1316	1.39E-66	1.98E-63
12	ENSMUSG0000048960	ENSMUST0000027056	1	Prex2	phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2	1.706461	6.676335	283.7963	1.12E-63	1.44E-60
13	ENSMUSG0000002289	ENSMUST0000002360	17	Angpti4	angiopoietin-like 4 [Source:MGI Symbol;Acc:MGI:1888999]	-1.73049	7.972378	282.7705	1.87E-63	2.22E-60

Available tools Cuffdiff, edgeR (R), limma (R), DESeq2 (R)

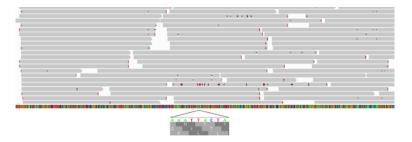

Differential expression

Available tools Cuffdiff, edgeR (R), limma (R), DESeq2 (R)

32/50

Beyond differential expression

- Annotating the results e.g. with gene symbols, GO terms
- Visualising the results, e.g. Volcano plots
- Gene set analysis etc...


Available tools

bioMart (R), DAVID, GOrilla, REVIGO, ClustVis...

RNA-seq data analysis Transcriptome assembly

Transcriptome assembly

- The goals is to reconstruct full-length transcript based on the sequence reads
- This is done via algorithms using the small overlapping reads fragments
 - If the reference genome is known: genome guided
 - If the reference genome is unknown de novo assembly

Transcriptome assembly

Challenges

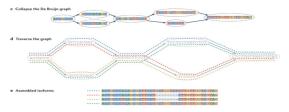
- Genes show different levels of gene expression, hence uneven coverage among genes
- More sequencing depth is needed to represent less abundant genes and rare events
- In order to balance the abundance differences between genes. laboratory procedures for library normalisation

Transcriptome assembly

Avail	lable	too	ls

- SOAP-denovo TRANS
- Oases
- Trans-ABYSS
- Trinity

All of them uses de Bruijn graphs to cope with the data and many of them have been developed from a genome assembly program



Trinity

ACAGO	TCCTG GTCT		AGCGC CTCT	T GGTCG	1
CACAG	TTCCT GGTCT		CAGEG CCTCT	TGGTC	
CCACK	ETTER TGGTC	TGTTG	CAGE TECTE	TTGGT	
CCCAC G	CTTC CTGGT	TTGTT	CAG TICCT	GTTGG	- k-mers (k=5)
GCCCA CG	GEEGG	CTTGT CCT	CA CTTCC	CT CT	K-mers (K=5)
CGCCC GCG	T TGETG T	CTTG CCCT	C GETTE T	TGTT CGTAG	
CCGCC AGCG		GCCC1	CGETT CT	TGT TCGTA	
ACCGC CAGCG	CCTGC TCT	cacco	GEGET TET	TG GTEGT]
ACCGCCCACAGCG		errorro egecer	CAGEGETTEETET	TGTTGGTCGTAG	- Reads

Nature Reviews | Genetics

Summary

- Many different expertises needed for RNA-seq experiment
 - Think ahead, plan wisely, ask for help
 - If your experimental design is wrong nothing will help
- Assess and try to improve the quality of raw reads
 - use QC tools and talk to sequencing centre
- If reference genome is available
 - get a corresponding genome annotation
 - align your reads using spliced alignment
 - in well-annotated genomes most reads should map to known genes
 - use tools designed for statistical analyses of sequencing count data (bioconductor)

Summary

- If interested in transcriptome assembly
 - use reference genome to guide it, if available
 - send lots of time in assessing the results e.g. by comparing related species, looking at ORFs
 - consider merging with other data sources
 - consider trying different assembler
- Ensure that your experimental design allows addressing the question of interest
 - More replicates translates into more power for differential gene expression and easier publication process

Exercises

Exercises

Exercises

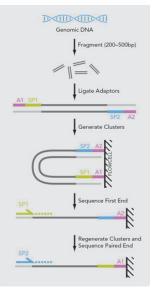
Main exercise

- checking the quality of the raw reads with FastQC
- mapping the reads to the reference genome using STAR
- o converting between SAM and BAM files format using Samtools
- assessing the post-alignment reads quality using QualiMap
- counting reads overlapping with genes regions using featureCounts
- building statistical model to find DE genes using edgeR called from a prepared R script

Bonus exercises

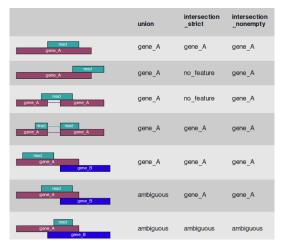
- functional annotation, putting DE genes in the biological context
- exon usage, studying the alternative splicing
- data visualisation and graphics
- de novo transcriptome assembly

Questions?

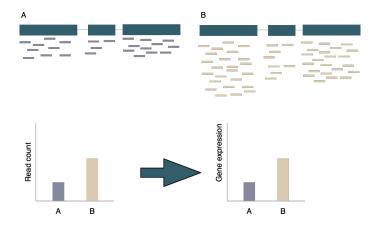


.fastq Machine output

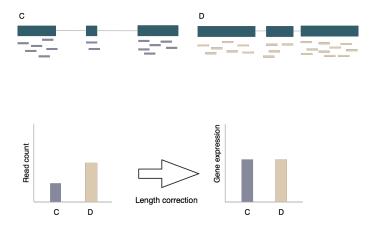
@SRR038845.3 HWI-EAS038:6:1:0:1938 length=36 CAACGAGTTCACACCTTGGCCGACAGGCCCGGGTAA +SRR038845.3 HWI-EAS038:6:1:0:1938 length=36 BA@7>B=>:>>7@7@>>9=BAA?:>52:>:9=8.=A @SRR038845.41 HWI-EAS038:6:1:0:1474 length=36 CCAATGATTTTTTTCCGTGTTTCAGAATACGGTTAA +SRR038845.41 HWI-EAS038:6:1:0:1474 length=36 BCCBA@BB@BBBBAB@B9B@=BABA@A:@693:@B= @SRR038845.53 HWI-EAS038:6:1:1:360 length=36 GTTCAAAAAGAACTAAATTGTGTCAATAGAAAACTC +SRR038845.53 HWI-EAS038:6:1:1:360 length=36 BBCBBBBBB@@BAB?BBBBCBC>BBBAA8>BBBAA@



.fastq Machine output: Paired-end (PE) sequencing


Counting reads

from: http://www-huber.embl.de/users/anders/HTSeq/doc/count.html



From counts to gene expression

From counts to gene expression

Experimental design

- Count reads (convert to RPKM/FPKM?)
- Small number of reads (= low RPKM/FPKM values) often non-significant

Condition 1 Condition 2

Remember that Fold change is not the same as significance

Gene A	1	2	2-fold	No
Gene B	100	200	2-fold	Yes

Fold Change

Significant?

