

Next Generation Sequencing and

Bioinformatics Analysis Pipelines

Adam Ameur National Genomics Infrastructure SciLifeLab Uppsala adam.ameur@igp.uu.se

Today's lecture

- Management of NGS data at NGI/SciLifeLab
- Examples of analysis pipelines:
 - Human exome & whole genome sequencing
 - Assembly using long reads
 - Clinical routine sequencing

What is an analysis pipeline?

• Basically just a number of steps to analyze data

Pipelines can be simple or very complex...

Some analysis pipelines for NGS data

Ion Torrent Torrent Suite Software

Illumina GATK, Galaxy,...

PacBio SMRT analysis portal

- Enables variant calling, de novo assembly, RNA expression analyses, …
- Many other tools exists, also from commercial vendors

Data processing at NGI

- Raw data from is processed in automated pipelines
- Delivered to user accounts at UPPNEX

In-house development of pipelines

- In some cases NGI develops own pipelines
- But only when we see a need for a specific analysis

Some examples follows:

I. Building a local variant databases (WES/WGS)
II. Assembly of genomes using long reads
III. Clinical sequencing – Leukemia Diagnostics

Example I: Computational infrastructure for exome-seq data

Background: exome-seq

- Main application of exome-seq
 - Find disease causing mutations in humans
- Advantages
 - Allows investigate all protein coding sequences
 - Possible to detect both SNPs and small indels
 - Low cost (compared to WGS)
 - Possible to multiplex several exomes in one run
 - Standardized work flow for data analysis
- Disadvantage
 - All genetic variants outside of exons are missed (~98%)

Exome-seq throughput

- We are producing a lot of exome-seq data
 - 4-6 exomes/day on Ion Proton
 - In each exome we detect
 - Over 50,000 SNPs
 - About 2000 small indels
 - => Over 1 million variants/run!
 - In plain text files

	© am ssh ♡ am ssh ♡ am ssh ♡ bash ♡ R ♡ cor ssh ♡ less ♡ ssh ♡ soliash
	Seqid Source Type Start End Score Strand Phase genotype reference coverage refAlleleCourts refAlleleStarts refAlleleCourts refAlleleCourts novelAlleiStarts novelAlleiStarts novelAlleiStarts novelAlleiStarts
O Terminal - less - 173 x41 Terminal - less - 173 x41 Terminal - less - 173 x41 Origonal Line form Terminal - less - 173 x41 Terminal - less - 173 x41 Terminal - less - 173 x41 Origonal Line form Terminal - less - 173 x41 Terminal - less - 173 x41 Terminal - less - 173 x41 Origonal Line form Terminal - less - 173 x41 Origonal Line form Status Terminal - less - 173 x41 Origonal Line form Status Terminal - less - 173 x41 Origonal Line form Status Statu	Build Succe Type Start Ed. Start Build Start Ed. Start Build Start Start <t< td=""></t<>
Ort 30,L0, dabere 39 145/32 249/17 0.0 1 <td< td=""><td>ScilifeLab</td></td<>	ScilifeLab
Stockholms UPPALA universitet UNIVERSITET	

How to analyze this?

- Traditional analysis A lot of filtering!
 - Typical filters
 - Focus on rare SNPs (not present in dbSNP)
 - Remove FPs (by filtering against other exomes)
 - Effect on protein: non-synonymous, stop-gain etc
 - Heterozygous/homozygous
 - This analysis can be automated (more or less)

Why is this not optimal?

- Drawbacks
 - Work on one sample at time
 - Difficult to compare between samples
 - Takes time to re-run analysis
 - When using different parameters
 - No standardized storage of detected SNPs/indels
 - Difficult to handle 100s of samples
- Better solution
 - A database oriented system
 - Both for data storage and filtering analyses

Analysis: In-house variant database

Ameur et al., Database Journal, 2014

CanvasDB - Filtering

Karolinska Institutet

Stockholms universitet UPPSALA UNIVERSITET

CanvasDB - Filtering speed

• Rapid variant filtering, also for large databases

A recent exome-seq project

- Hearing loss: 2 affected brothers

 Likely a rare, recessive disease
 Shared homozygous SNPs/indels
- Sequencing strategy
 - TargetSeq exome capture
 - One sample per PI chip

heteroz

homoz

heteroz

homoz

nr reads	(% mapped)	76M-89M (97%)
mapped reads	(% on target)	73M-88M (83%)
SNPs	(% in dbSNP)	85k-93k (93%)
Indels	(% in dbSNP)	5k-6k (48%)

Filtering analysis

- CanvasDB filtering for a variant that is...
 - rare
 - at most in 1% of ~700 exomes
 - shared
 - found in both brothers
 - homozygous
 - in brothers, but in no other samples
 - deleterious
 - non-synonymous, frameshift, stop-gain, splicing, etc..

> cand <- filterRecessive(c("up_001_1","up_001_2"), outfile="cand.txt")
Total time for filtering: 27.012s</pre>

Filtering results

- Homozygous candidates
 - 2 SNPs
 - stop-gain in STRC
 - non-synonymous in *PCNT*
 - 0 indels

 Compound heterozygous candidates (lower priority) – in 15 genes

sample_name	class	chr	pos	ref	alt	snp137	gene	ref_counts	alt_counts
up_001_1	stopgain	chr15	43896948	G	A	rs144948296	STRC	3	58
up_001_2	stopgain	chr15	43896948	G	A	rs144948296	STRC	5	55
up_001_1	nonsynonymous	chr21	47808772	G	A	rs35044802	PCNT	0	21
up_001_2	nonsynonymous	chr21	47808772	G	A	rs35044802	PCNT	1	14

=> Filtering is fast and gives a short candidate list!

STRC - a candidate gene

STRC

From Wikipedia, the free encyclopedia

Stereocilin is a protein that in humans is encoded by the STRC gene.^{[1][2][3]}

This gene encodes a protein that is associated with the hair bundle of the sensory hair cells in the inner ear. The hair bundle is composed of stiff microvilli called stereocilia and is involved with mechanoreception of sound waves. This gene is part of a tandem duplication on chromosome 15; the second copy is a pseudogene. Mutations in this gene cause autosomal recessive non-syndromic deafness.^[3]

=> Stop-gain in STRC is likely to cause hearing loss!

IGV visualization: Stop gain in STRC

	-		—	
	Uprolated sample			
	Unrelated Sample			
	_			
[0 - 336]				
	Brother #1	Â		<
		A		
		A		
[0 - 331]				
	—		—	
	Brother #2	A		
		A		1
I		Â		
G A G	ATGGGACAGC	A G G A T C T G	T A G G G G A T	C T G T C G T G T
L	H S L	L I Q	L P I	Q R T
Karoli	nska 🧰 🛞			SciLiteLab
2 ~ 20 ~ 7 Institu	UTEL Stockholms UPPSALA universitet UNIVERSITET			

STRC, validation by Sanger

- Does not seem to be homozygous..
 - Explanation: difficult to sequence STRC by Sanger
 - Pseudo-gene with very high similarity
- New validation showed mutation is homozygous!!

CanvasDB – some success stories

Solved cases, exome-seq - Niklas Dahl/Joakim Klar

NMD11

ED1

AV1

W

AP43

D:9652

Neuromuscular disorder Artrogryfosis Lipodystrophy Achondroplasia Ectodermal dysplasia Achondroplasia Ectodermal dysplasia Arythroderma Ichthyosis Muscular dystrophy Neuromuscular disorder Welanders myopathy (D) Skeletal dysplasia Visceral myopathy (D) Ataxia telangiectasia Exostosis Alopecia Epidermolysis bullosa Hearing loss

SKD36 ACR1 ACD2 Success rate >80% for ED21 recent Proton projects! ACD9 **SD12** DMD7 NMD8 SKD21 D:5156 **MR67** SKD13 **SD14**

Karolinska

CanvasDB - Availability

• CanvasDB system freely available on GitHub!

Installation of the CanvasDB system

This section describes how to download and install CanvasDB on your local computer. Make sure that MySQL, R and ANNOVAR are running on your computer before starting the installation.

Step 1. Download code from github

\$ git clone https://github.com/UppsalaGenomeCenter/CanvasDB.git \$ cd CanvasDB

Step 2. Set the current path to 'rootDir' in canvasDB.R

Next Step: Whole Genome Sequencing

Capacity of HiSeq X Ten: 320 whole human genomes/week!!!

⇒ More work on pipelines and databases needed!

Analysis of WGS data @ SciLifeLab

We have a working group for WGS at SciLifeLab!

wgs-toolbox@scilifelab.se

Contacts with Genomics England initiated for analyses

The SciLifeLab Human WGS Initiative

- WGS of patient cohorts (n=10,000 ind/year)
- Genetic Variant Database for the Swedish Population (n=1000)

The Swedish Genetic Variant Project

- A. Identify a cohort that reflects the genetic structure of the Swedish population
- B. Generate WGS data using short- and long-read MPS technologies
- C. Establish a user-friendly database to make information available to the research community (association analyses) and clinical genetics laboratories.

Twin Registry samples used as control cohort

- Inclusion based on twinning
- Distribution like population density

- General population-prevalence of disease
- 10,000 individuals have been analysed with SNP arrays

Identify 1,000 individuals based on genetic structure and diversity across Sweden

Principal components of European samples from 1,000 genomes project and 10,000 Swedish samples

Illumina WGS of Swedish control cohort

Step 1: 30X Illumina data of the 1,000 individuals

Step 2: Mapping and variant calling

Step 3: Making genotype frequencies available for download

A web server for 'SweGen' data

SweFreq

About Tern

Terms of use Data Beacon

ExAC Browser

Download Data

Admin

Adam Ameur Logout adam.ugc@gmail.com

SweGen Variant Frequency Database

This server hosts whole-genome variant frequencies for 1000 Swedish individuals generated within the SweGen project. The frequency data is intended to be used as a resource for the research community and clinical genetics laboratories. Individual positions in the genome can be viewed using the Data Beacon or ExAC Browser by clicking the links above. To access the variant frequency file you need to register.

Please note that the 1000 individuals included in the SweGen project represent a cross-section of the Swedish population and that no disease information has been used for the selection. The frequency data may therefore include genetic variants that are associated with, or causative of, disease.

We request that any use of data from the SweGen project cite this preprint on bioRxiv.

Released on Oct 19th! Data available from: swefreq.nbis.se

Example II:

Assembly of genomes using Pacific Biosciences

Genome assembly using NGS

- Short-read de novo assembly by NGS
 - Requires mate-pair sequences
 - Ideally with different insert sizes
 - Complicated analysis
 - Assembly, scaffolding, finishing
 - Maybe even some manual steps
 - => Rather expensive and time consuming
- Long reads really makes a difference!!
 - We can assemble genomes using PacBio data only!

HGAP de novo assembly

• HGAP uses both long and shorter reads

PacBio assembly analysis

• Simple -- just click a button!!

	in eportal/i	, beargin-j	ob petalis	01 300/ 1040/			pacon	o de novo a	sectiony	MI			-
Most Visited 🔻 📋 Gett	ing Started	C Save	to Mendele	У									
SMRT® Portal Ho	me Adm	in Tech S	Support File	s Help About						Welcor	ne, ugc_admir	Account	Lo
DES	IGN JC)B			MONITOR J	OBS		1		VIE	W DATA		
ob Name assembly			Comme	nts				Groups	ıll		Us	er ugc_admi	in
RS_HGAP_Assem	bly.3		•	Reference [None select	ed]	•							
SMRT Cells Available	(Viewing 1	- 31 of 31)		Search	Go Advanced		SMRT Cells in J	ob (Viewing	1 - 1 of 1)				
Sample	Version	User	Groups	Started	Uri		Sample	Version	User	Groups	Uri		_
Pb9_frax 21	2.0.2		all	2014-02-20T19:28:20+0000	/home/pacbio/[Pb33_1	2.0.2		all	/home/pacbi	DATA/adam/	Pb_3:
Pb9_frax 44	2.0.2		all	2014-02-20T19:28:20+0000	/home/pacbio/l		-	1	1	1			
Pb9_frax 63	2.0.2		all	2014-02-20T19:28:20+0000	/home/pacbio/[
Pb33_1	2.0.2		all	2014-02-20T19:28:20+0000	/home/pacbio/l								
Pb33_2	2.0.2		all	2014-02-20T19:28:20+0000	/home/pacbio/[
Pb 33-5	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-7	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-6	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-3	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-9	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-8	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-4	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb 33-10	2.0.2		all	2014-02-24T13:48:09+0000	/home/pacbio/[
Pb55_f2rpt	2.1.0		all	2014-05-09T10:48:14+0000	/home/pacbio/[
Pb_46_3_repeat	2.1.0		all	2014-05-09T10:48:14+0000	/home/pacbio/[
	2.1.0		all	2014-05-09T10:48:14+0000	/home/pacbio/[
Pb55_f2rpt	2.1.0		all	2014-05-09T10:48:14+0000	/home/pacbio/[
Pb55_f2rpt Pb_46_9			all	2014-05-09T10:48:14+0000	/home/pacbio/[
Pb55_f2rpt Pb_46_9 Pb_46_10	2.1.0			2014 05 00744-00-40-0000	/home/pachio/f								
Pb55_f2rpt Pb_46_9 Pb_46_10 Pb46_3	2.1.0		all	2014-05-08111:08:49+0000	morno/pacolore								

PacBio assembly, example result

Example: Complete assembly of a bacterial genome

PacBio assembly – recent developments

Also larger genomes can be assembled by PacBio..

De novo WGS of Swedish cohort

Establish Swedish reference genome sequences by *de novo* assembly of long-reads: *PacBio+BioNano+10X Genomics*

De novo assembly of 75X PacBio data

Assembly (FALCON) Error correction (2 x Quiver)

Analysis time: 1 month/genome

	Individual 1	Individual 2
Assembly size	3,039,619,582	3,024,752,299
Nr contigs	11,249	11,601
Longest contig	36,8 Mb	54,1 Mb
N50	8,9 Mb	8,3 Mb

Hybrid scaffolding, PacBio + BioNano

Hybrid scaffolding with two labellings resulted in

- 3,1 Gb assembly, 51 Mb N50 (for individual #1)
- 3,1 Gb assembly, 46 Mb N50 (for individual #2)

Aligning contigs to human reference

> 99% of bases can be aligned to human reference (hg38)

Example III:

Clinical sequencing for Leukemia Treatment

Chronic Myeloid Leukemia

• BCR-ABL1 fusion protein – a CML drug target

Traditional mutation screening in BCR-ABL1

Nested PCR and Sanger sequencing:

Limitations:

- Mutations at frequencies below 10-20% not seen
- Biases may be introduced by nested PCR
- Whole BCR-ABL1 fusion transcript not sequenced
- Clonal composition of mutations not determined

Stockho

Our clinical diagnostics pipeline for BCR-ABL1

BMC Cancer

Cavelier et al. BMC Cancer (2015) 15:45 DOI 10.1186/s12885-015-1046-y

RESEARCH ARTICLE

Open Access

ATTONAL

GENOMICS

Clonal distribution of *BCR-ABL1* mutations and splice isoforms by single-molecule long-read RNA sequencing

Lucia Cavelier¹⁺, Adam Ameur¹⁺, Susana Häggqvist¹, Ida Höijer¹, Nicola Cahill¹, Ulla Olsson-Strömberg² and Monica Hermanson¹

Abstract

Background: The evolution of mutations in the BCR-ABL1 fusion gene transcript renders CML patients resistant to tyrosine kinase inhibitor (TKI) based therapy. Thus screening for BCR-ABL1 mutations is recommended particularly in patients experiencing poor response to treatment. Herein we describe a novel approach for the detection and surveillance of BCR-ABL1 mutations in CML patients.

Methods: To detect mutations in the BCR-ABL1 transcript we developed an assay based on the Pacific Biosciences (PacBio) sequencing technology, which allows for single-molecule long-read sequencing of BCR-ABL1 fusion transcript molecules. Samples from six patients with poor response to therapy were analyzed both at diagnosis and follow-up. cDNA was generated from total RNA and a 1,6 kb fragment encompassing the BCR-ABL1 transcript was amplified using long range PCR. To estimate the sensitivity of the assay, a serial dilution experiment was performed.

Results: Over 10,000 full-length *BCR-ABL1* sequences were obtained for all samples studied. Through the serial dilution analysis, mutations in CML patient samples could be detected down to a level of at least 1%. Notably, the assay was determined to be sufficiently sensitive even in patients harboring a low abundance of *BCR-ABL1* levels. The PacBio sequencing successfully identified all mutations seen by standard methods. Importantly, we identified several mutations that escaped detection by the clinical routine analysis. Resistance mutations were found in all but one of the patients. Due to the long reads afforded by PacBio sequencing, compound mutations present in the same molecule were readily distinguished from independent alterations arising in different molecules. Moreover, several transcript isoforms of the *BCR-ABL1* transcript were identified in two of the CML patients. Finally, our assay allowed for a quick turn around time allowing samples to be reported upon within 2 days.

Conclusions: In summary the PacBio sequencing assay can be applied to detect *BCR-ABL1* resistance mutations in both diagnostic and follow-up CML patient samples using a simple protocol applicable to routine diagnosis. The method besides its sensitivity, gives a complete view of the clonal distribution of mutations, which is of importance when making therapy decisions.

echnology

Uppsala

BCR-ABL1 mutations at diagnosis

PacBio sequencing generates ~10 000X coverage!

BCR-ABL1 mutations in follow-up sample

Mutations acquired in fusion transcript. Might require treatment with alternative drug.

BCR-ABL1 dilution series results

• Mutations down to 1% detected!

BCR-ABL1 - Compound mutations

Analysis method for BCR-ABL1 mutations

- Create CCS reads and screen all known resistance mutations
- CAVA analysis count number of WT and MUT sequences
 WT sequence: TATATCATCACTGAGTTCATG
 MUT sequence: TATATCATCATTGAGTTCATG
 BCR-ABL1 resistance mutation
- Classify each mutation
 - Less than 500X coverage => Unresolved
 - At least 0.5% mutation frequency => **Positive**
 - Otherwise => *Negative*

UPPSALA UNIVERSITET

Web system for sharing results

Clinical Diagnosis of BCR-ABL1 mutations

Clinical Genetics

- Collection of samples
- Seq library preparation

Sequencing Facility

SMRT sequencingCAVA analysis

IT developers

- Web server for results

- Ongoing routine service, 0-4 samples/week.
- Over 150 patient samples run so far
- 100% consistency with Sanger results

PacBio - Ongoing developments

Sequel - New instrument with higher throughput!

7x more data per SMRT cell!

Installation at NGI during 2016

Who does the sequencing?

Ulf Gyllensten Platform director

Inger Jonasson

Olga Vinnere Pettersson Project coordinator

Adam Ameur

Ignas Bunikis Bioinformatician, NGS Bioinformatician, NGS

Christian Tellgren-Roth Bioinformatician, NGS

Susana Häggqvist Research engineer NGS

lda Höijer **Research engineer** NGS

Cecilia Lindau Research engineer NGS

Maria Schenström **Research engineer** NGS

Magdalena Andersson Research engineer NGS

Ulrika Broström **Research engineer** NGS

Nina Williams **Research engineer** NGS

Carolina Ilbäck **Research engineer** NGS

Anna Petri Research engineer Sequencing Service

Anne-Christine Lindström Research engineer Sequencing Service

