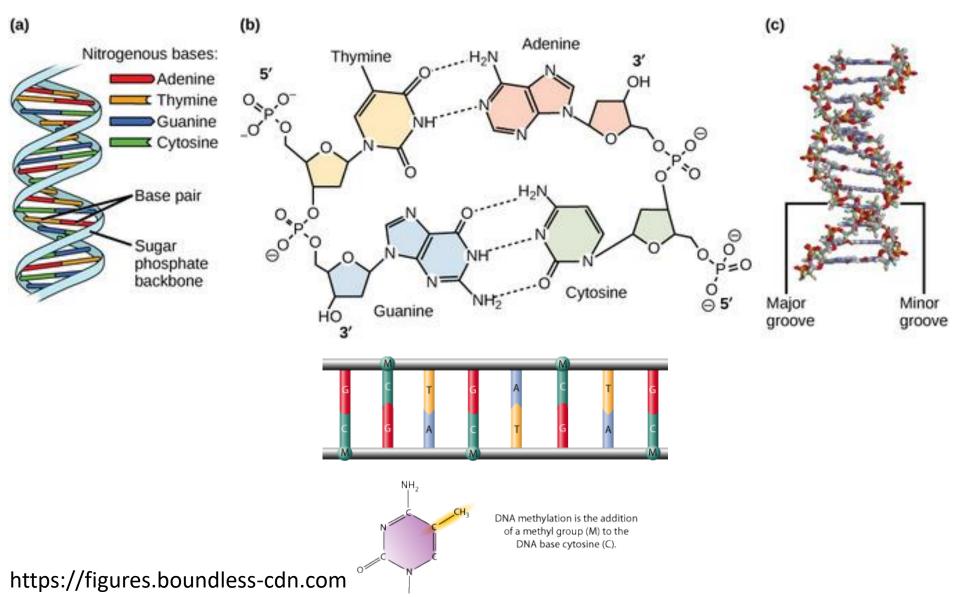




## Next Generation Sequencing – An Overview

### Olga Vinnere Pettersson, PhD National Genomics Infrastructure hosted by ScilifeLab, Uppsala Node (UGC)

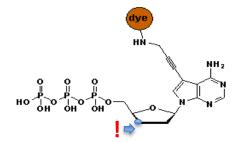

Version 6.3

## Outline:

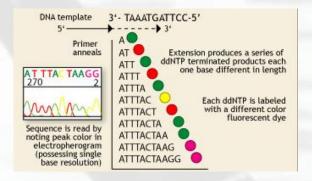


- A bit of history
- NGS technologies & sample prep
- NGS applications
- National Genomics Infrastructure Sweden

## What is sequencing?




## Once upon a time...


Fredrik Sanger and Alan Coulson
 Chain Termination Sequencing (1977)
 Nobel prize 1980

Principle:

SYNTHESIS of DNA is randomly **TERMINATED** at different points Separation of fragments that are 1 nucleotide different in size



Lack of OH-group at 3' position of deoxyribose



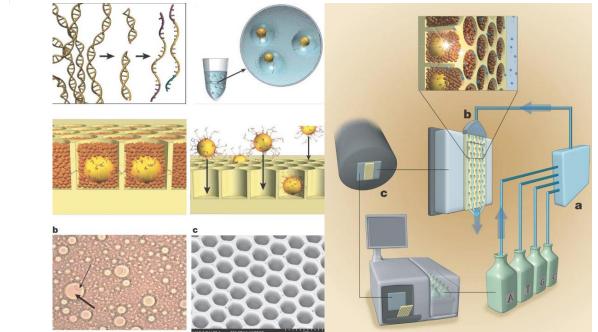
1 molecule sequenced at a time = 1 read Capillary sequencer: 384 reads per run

## **2006 REVOLUTION**





#### Journal information + About the journal + For authors


Nickerson<sup>1</sup>, John R. Nobile<sup>1</sup>, Ramona Plant<sup>1</sup>, Bernard P. Puc<sup>1</sup>, Michael T. Ronan<sup>1</sup>, George T. Roth1, Gary J. Sarkis1, Jan Fredrik Simons1, John W. Simpson1, Maithreyan Srinivasan<sup>1</sup>, Karrie R. Tartaro<sup>1</sup>, Alexander Tomasz<sup>2</sup>, Kari A. Vogt<sup>1</sup>, Greg A. Volkmer<sup>1</sup>, Shally H. Wang<sup>1</sup>, Yong Wang<sup>1</sup>, Michael P. Weiner<sup>4</sup>, Pengguang Yu1, Richard F. Begley1 & Jonathan M. Rothberg1

| nature                                  |  |  |  |
|-----------------------------------------|--|--|--|
| FULL TEXT                               |  |  |  |
| Readers' Comments                       |  |  |  |
| Subscribe to comments (RSS)             |  |  |  |
| What is RSS?                            |  |  |  |
| Previous   Next +     Table of contents |  |  |  |
| Download PDF                            |  |  |  |
| View interactive PDF in<br>ReadCube     |  |  |  |
| Share this article                      |  |  |  |
| CrossRef lists 376 articles             |  |  |  |

citing this article

#### **Thousands of molecules sequenced** in parallel

#### 1 mln reads sequenced per run





Roche 454 GS FLX

## Technologies

## NGS technologies

| Company                                | Platform                       | Amplification | Sequencing<br>method |
|----------------------------------------|--------------------------------|---------------|----------------------|
| Roche                                  | 454 (until 2016)               | emPCR         | Pyrosequencing       |
| Illumina                               | HiSeq, MiSeq<br>NextSeq, X10   | Bridge PCR    | Synthesis            |
| LifeTechnologie<br>s(Thermo<br>Fisher) | Ion Torrent,<br>Ion Proton, S5 | emPCR         | Synthesis (pH)       |
| Pacific<br>Biosciences                 | RSII<br>SEQUEL                 | None          | Synthesis<br>(SMRT)  |
| Complete<br>genomics                   | Nanoballs                      | None          | Ligation             |
| Oxford<br>Nanopore*                    | MinION<br>GridION              | None          | Flow                 |

RIP technologies: Helicos, Polonator, SOLiD, 454 etc.

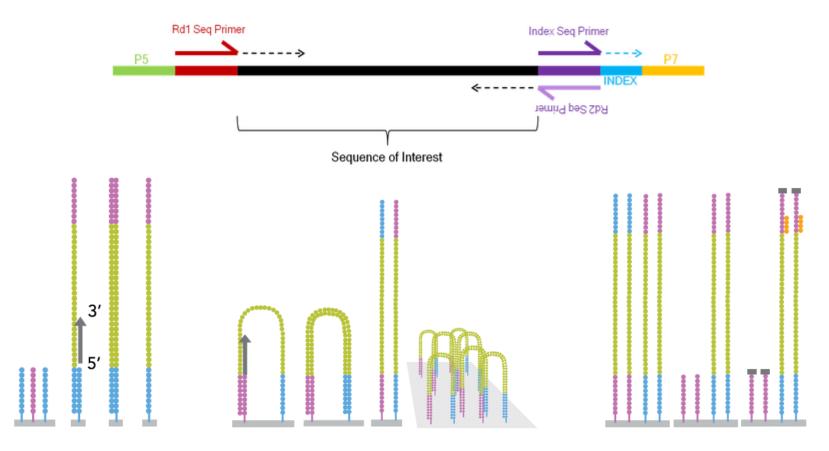
In development: Tunneling currents, nanopores, etc.

## Differences between platforms

- Technology: chemistry + signal detection
- Run times vary from hours to days
- Production range from Mb to Gb
- Read length from <100 bp to > 20 Kbp
- Accuracy per base from 0.1% to 15%
- Cost per base

## Illumina

| Instrument | Yield and run time                     | Read<br>Length       | Error<br>rate | Error<br>type |
|------------|----------------------------------------|----------------------|---------------|---------------|
| HiSeq2500  | 120 Gb – 600 Gb<br>27h or standard run | 100x100<br>(250x250) | 0.1%          | Subst         |
| MiSeq      | 540 Mb – 15 Gb<br>(4 – 48 hours)       | Up to<br>350x350     | 0.1%          | Subst         |
| HiSeqXten  | 800 Gb - 1.8 Tb<br>(3 days)            | 150x150              | "             | "             |


#### **Main applications**

- Whole genome, exome and targeted reseq
- Transcriptome analyses
- Methylome and ChiPSeq
- Rapid targeted resequencing (MiSeq)
- Human genome seq (Xten)





## **Illumina**: bridge amplification



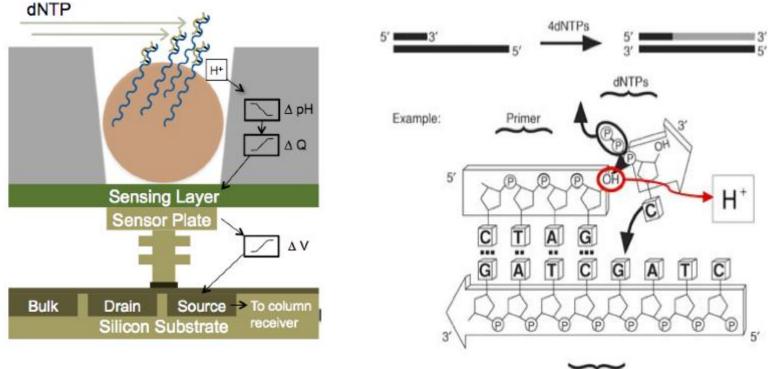
- 200M fragments per lane
- Bridge amplification
- Ends with blocking of free 3'-ends and hybridisation of sequencing primer



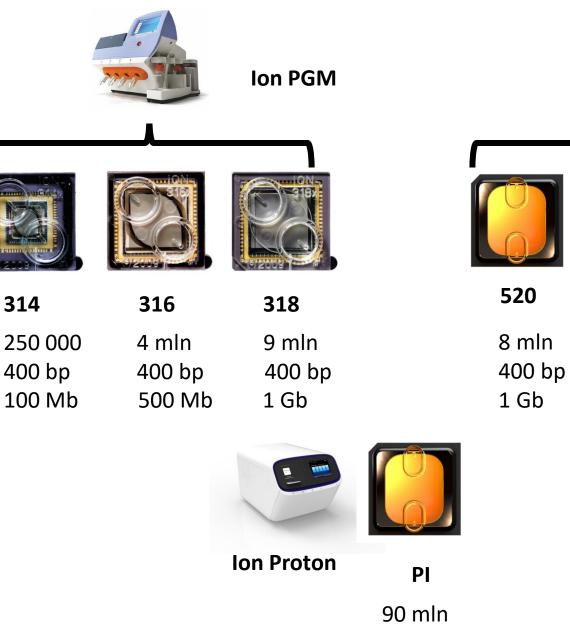
## Ion Torrent



| Chip                     | Yield - run<br>time | Read<br>Length |
|--------------------------|---------------------|----------------|
| 314, 316,                | 0.1 – 1 Gb Gb,      | 200 – 400      |
| 318 ( <b>PGM</b> )       | 3 hrs               | bp             |
| P-I<br>( <b>Proton</b> ) | 10 Gb<br>4 hrs      | 200 bp         |
| 520, 530,                | 1 Gb – 10 Gb        | 400 (600) bp   |
| 540 ( <b>S5</b> )        | 3 hrs               | (except 540)   |

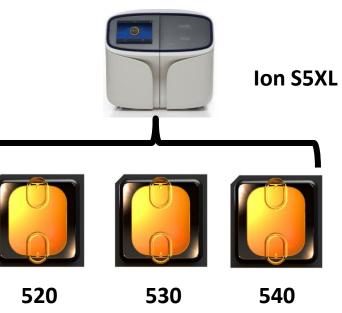



#### Main applications


- Microbial and metagenomic sequencing
- Targeted re-sequencing (gene panels)
- Clinical sequencing



## **Ion Torrent** - H<sup>+</sup> ion-sensitive field effect transistors




Template



200 bp

10-18 Gb

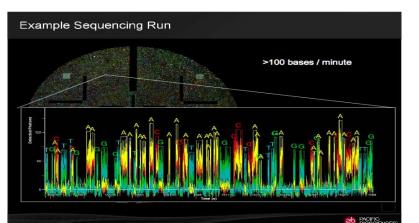


15-20 mln

400 bp

5 Gb

90 mln

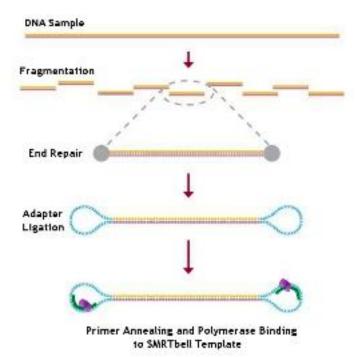

200 bp

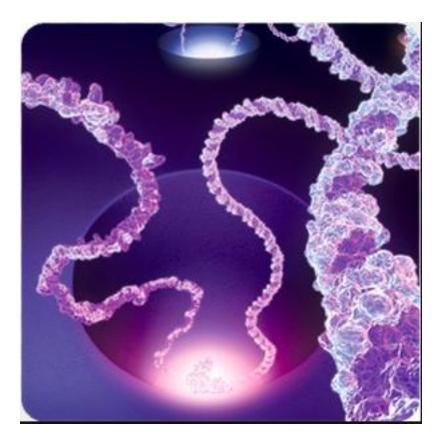
10 Gb

## PacBio SMRT-technology

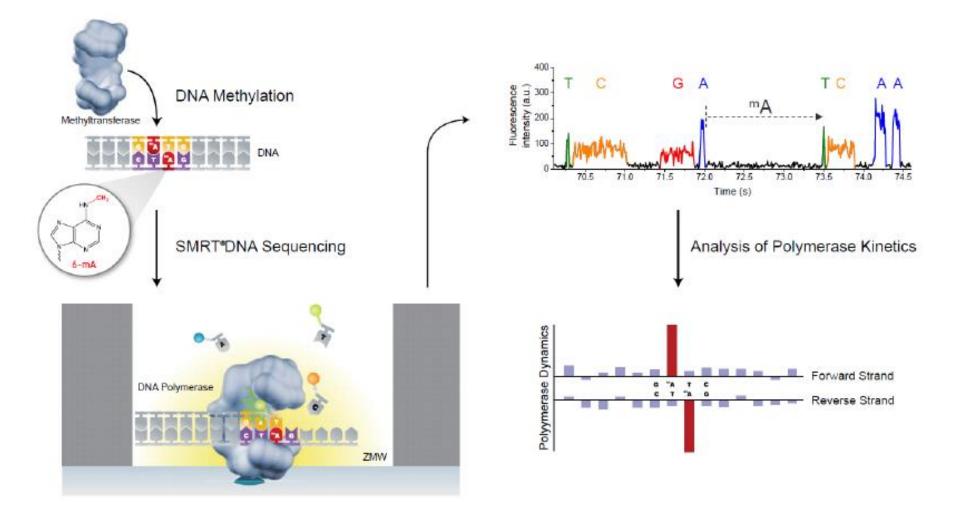
| Instrument | Yield and run time                           | Read Length                       | Error<br>rate                           | Error<br>type                 |
|------------|----------------------------------------------|-----------------------------------|-----------------------------------------|-------------------------------|
| RS II      | 250 Mb – 1.3 Gb<br>/30 - 360 min<br>SMRTCell | 250 bp – 30 kb<br>( <b>74 kb)</b> | <b>15%</b><br>(on a single<br>passage!) | Insertions<br>, <b>random</b> |
| SEQUEL     | 2-6 Gb per<br>SMRT<br>30-360 min             | 250 bp – 25 kb                    | as<br>RSII                              | as RSII                       |

#### Single-Molecule, Real-Time DNA sequencing




## PacBio SMRT - technology




### Single Molecule Real Time





#### Base Modification: Discover the Epigenome



Detect base modifications using the kinetics of the polymerization reaction during normal sequencing

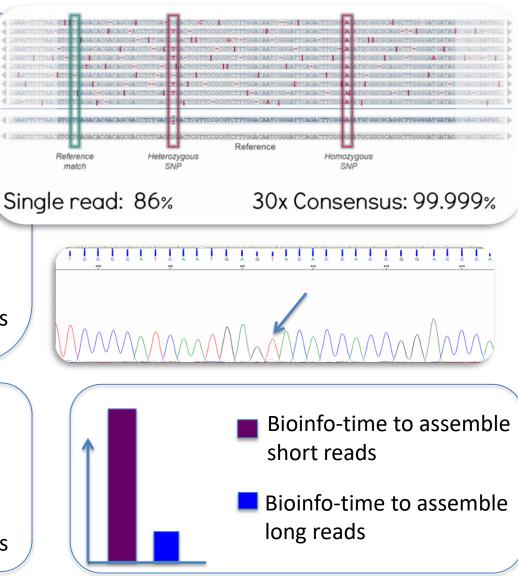
## SMRT sequencing: common misconceptions

#### High error rate?

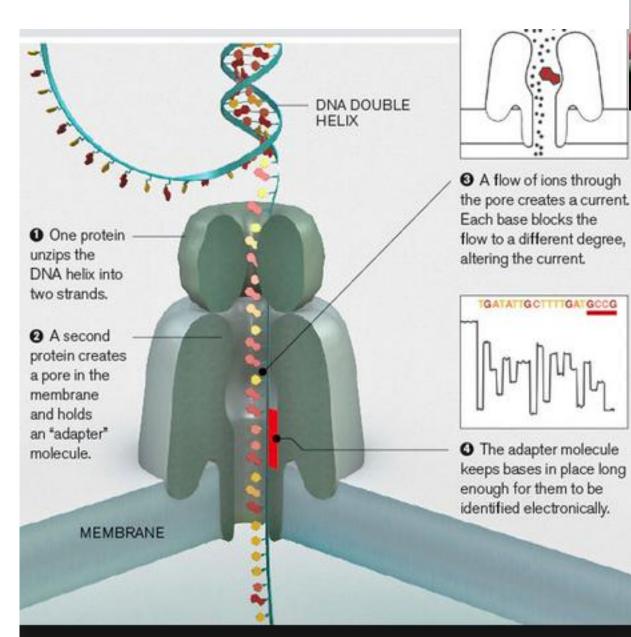
Irrelevant, because errors are random

Depending on coverage

Examples:


- 8 Mb genome, 8 SNPs detected
- 65 kb construct: 100% correct sequence
- Detection of low frequency mutations

Single-molecule reads without PCR-bias


High price?

Not for small genomes

Better assembly quality



### **Oxford Nanopore MinION**





Reads up to 100k 1D and 2D reads 15-40% error rate Life time 5 days



## Main types of equipment







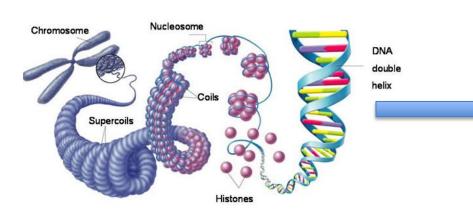
Illumina HiSeq Illumina Xten Illumina MiSeq

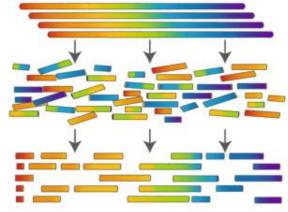
Short paired reads HIGH throughput Ion Torrent PGM Ion Proton Ion S5 XL

Short single-end reads FAST throughput PacBio RSII

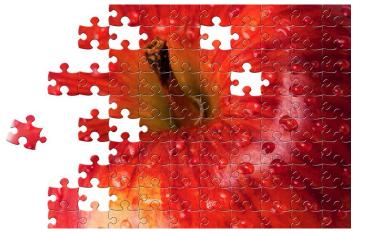
Ultra-long reads FAST throughput

## Applications


## NGS/MPS applications


- Whole genome sequencing:
  - De novo sequencing
  - Re-sequencing
- Transcriptome sequencing:
  - mRNA-seq
  - miRNA
  - Isoform discovery
- Target re-sequencing
  - Exome
  - Large portions of a genome
  - Gene panels
  - Amplicons




## De novo sequencing

• Used to create a reference genome without previous reference





ATGETCCGATTAGGAAACCTATCTGTAACTGTTTCATTCAGTAAAAGGAGGAAATATAA





# De novo vs re-sequencing ref

#### De novo

No bias towards a reference No template to adapt to

Many contigs Works best for large-scale events **Re-seq** 

Finding similarities to a reference Easier to identify SNPs and minor events Fewer contigs

Novel events are lost



## De novo sequencing:

#### Illumina strategy

#### Sequencing:

- PE library with 350 bp
- PE library with 600 bp
- MP library with 2 kb
- MP library with 5-8-20 kb

PE: 50-100x, MP 10-15x

#### Analysis:

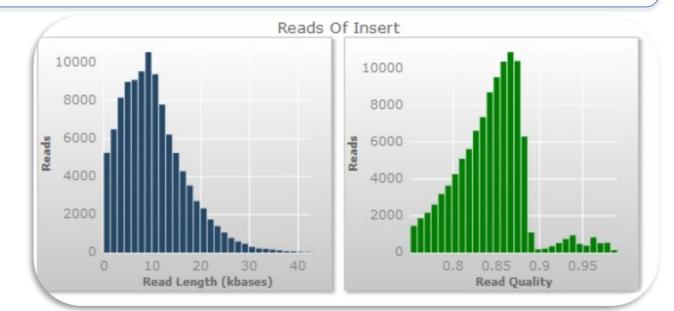
• ALLPATH

#### **PacBio strategy**

#### Sequencing:

• 10-20 kb library

50-80x


(where 30x are reads above 10 kb)

#### Analysis:

- HGAP (haploid)
- FALCON (diploid)

## Example: de novo PacBio; Crow





#### **Sequencing results**

Number of SMRT cells: 70

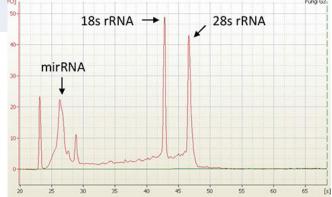

Total bases per SMRT: 1.39 Gb

Total reads per SMRT: 106 833

#### Assembly results, FALCON

|                | PRIMARY | ALTERNATIVE |
|----------------|---------|-------------|
| N50            | 8.5 Mb  | 23 kb       |
| N75            | 3.9 Mb  | 18 kb       |
| Nr contigs     | 4375    | 2614        |
| Longest contig | 36 Mb   | 121 kb      |
| Total length   | 1.09 Gb | 45 Mb       |

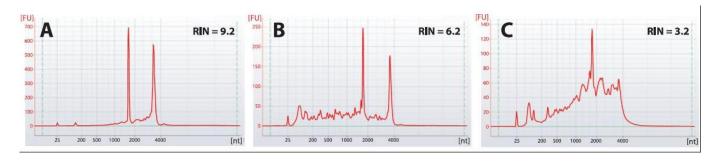





## **mRNA:** rRNA depletion vs polyA selection

| Method            | Pros                                                                                         | Cons                                                                                    | Recommended                       |
|-------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------|
| rRNA<br>depletion | <ul> <li>Captures on-going<br/>transcription</li> <li>Picks up non-coding<br/>RNA</li> </ul> | <ul> <li>Does not get rid<br/>of all rRNA</li> <li>Messy Dif.Ex.<br/>profile</li> </ul> | 20-40 mln reads<br>(single or PE) |
| polyA selection   | <ul> <li>Gives a clean Dif.Ex.<br/>profile</li> </ul>                                        | <ul> <li>Does not pick<br/>non-coding RNA</li> </ul>                                    | 5-20 mln reads                    |

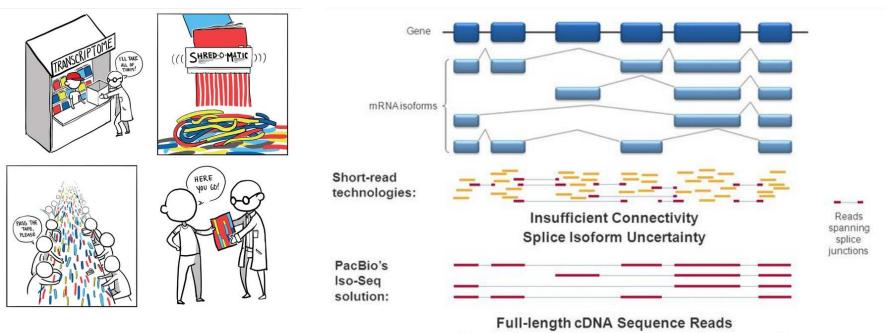
Alternative for **human** RNA-seq: *AmpliSeq Human Transcriptome panel*:


- faster, cheaper, works fine with FFPE
- input: 50 ng **total** RNA
- dif.ex. ONLY





## RNA-seq experimental setup


- mRNA only: any kit
- mRNA and miRNA: only specialized kits
- Always use DNase!
- RIN value above 8.



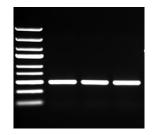
- CONTROL vs experimental conditions
- Biological replicates: 4 strongly recommended



## **RNA-seq experimental setup**



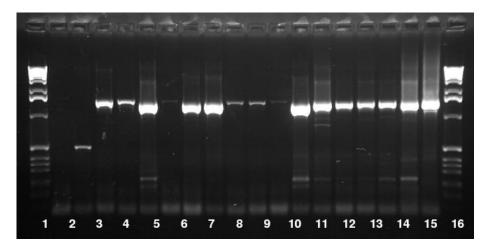
Full-length cDNA Sequence Reads Splice Isoform Certainty – <u>No Assembly Required</u>


NATURE METHODS | NEWS AND VIEWS

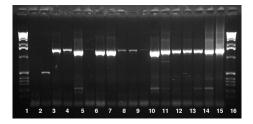
-< 🔒

#### Genomics: the state of the art in RNA-seq analysis

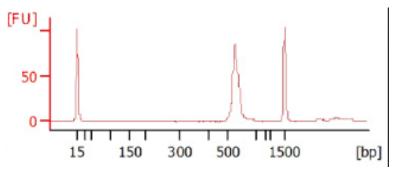
#### lan Korf


Nature Methods 10, 1165–1166 (2013) | doi:10.1038/nmeth.2735 Published online 26 November 2013 PacBio Iso-seq: full-length transcriptome seq



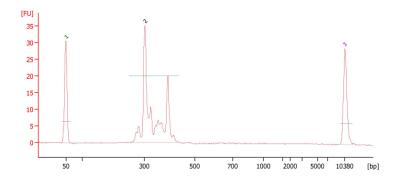

## **Amplicon sequencing**

Used a lot in metagenomics

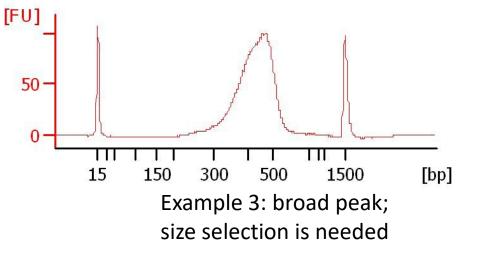

- Community analysis
  - rRNA genes & spacers (16S, ITS)
  - Functional genes
- Genotyping by sequencing



## Amplicon sequencing

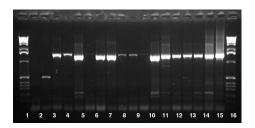



Example 1: tight peak, OK




#### FOR ANY NGS TECHNOLOGY

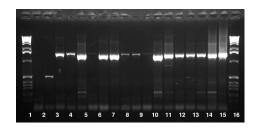
Size difference among fragments **must not** exceed 80 bp (or 20% in length) Reason – preferential amplification of short fragments



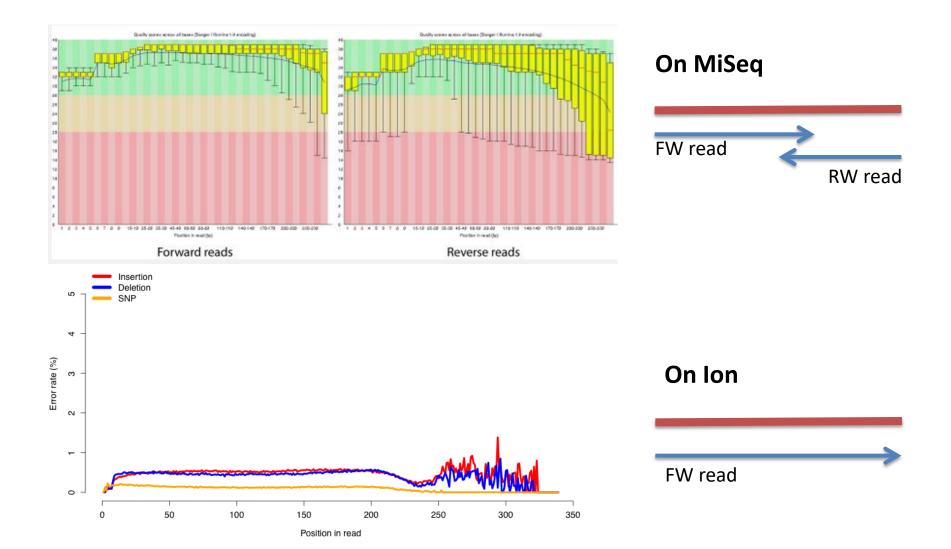


Example 2: several sizes, fractionation is needed => we HAVE to make several libraries




#### SIZE MATTERS...

## Size-related bias in amplicon-seq






Courtesy Mikael Brandström Durling, Forest Mycology and Pathology, SLU



## When you sequence an amplicon...



## Main types of equipment & applications



Illumina HiSeq NextSeq, X10, MiSeq, MiniSeq, NovaSeq

Short paired reads HIGH throughput

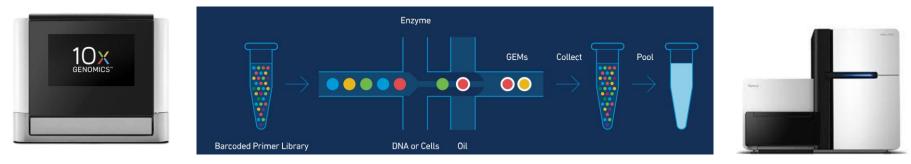
Human WGS Re-sequencing 30x mRNA and miRNA De novo transcriptome Exome ChIP-seq Short amplicons Methylation



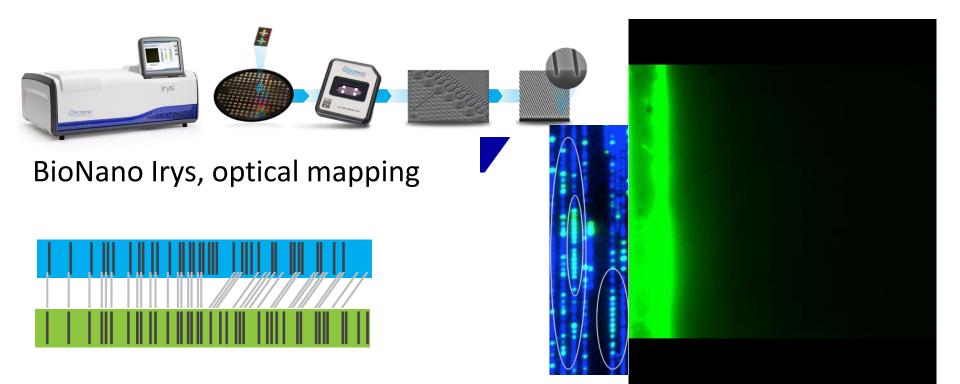
Ion Torrent PGM Ion Proton Ion S5 XL

Short single-end reads FAST throughput

mRNA and miRNA Exome ChIP-seq Short amplicons Gene panels Clinical samples




PacBio RSII SEQUEL


Ultra-long reads FAST throughput

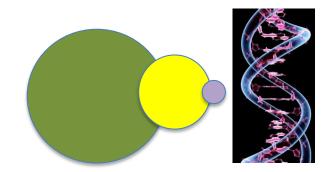
Long amplicons Re-sequencing De novo sequencing Novel isoform discovery Fusion transcript analysis Haplotype phasing Clinical samples

### Other technologies for scaffolding of genomes

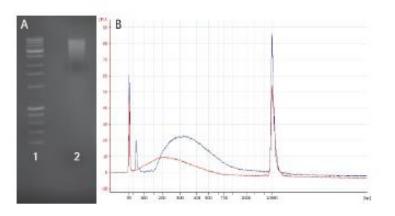


#### 10x Chromium -> Illumina sequencing

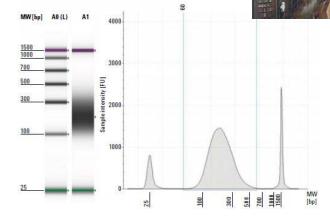



## What is "The BEST"?

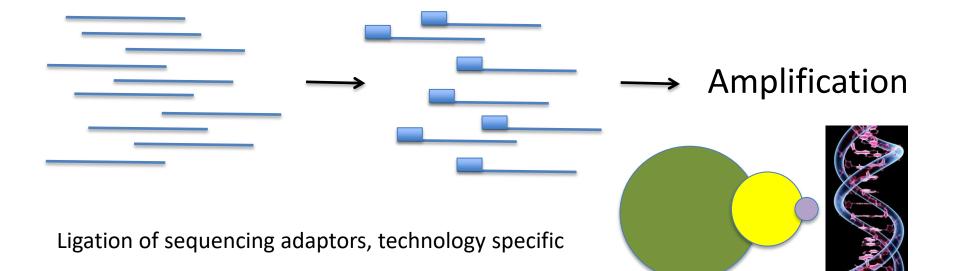



### SAMPLE QUALITY REQUIREMENTS

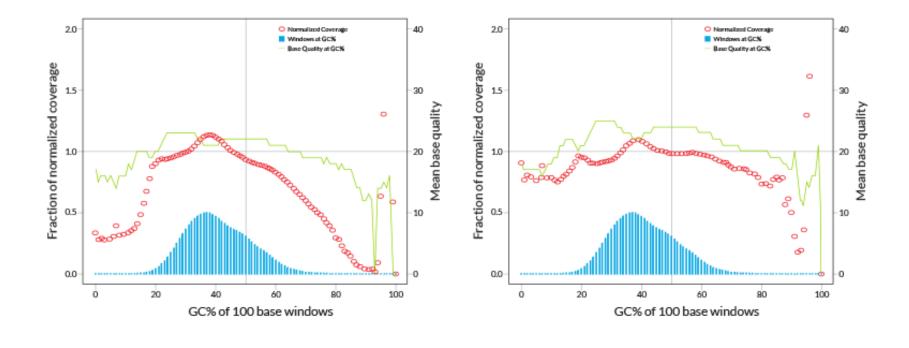
### Sample prep: take home message


## PCR-quality sample and NGS-quality sample are two completely different things




## Making an NGS library




DNA QC – paramount importance



Sharing & size selection



### Library complexity



#### Suboptimal sample


Good sample

(source: https://www.kapabiosystems.com)

## DNA quality requirements

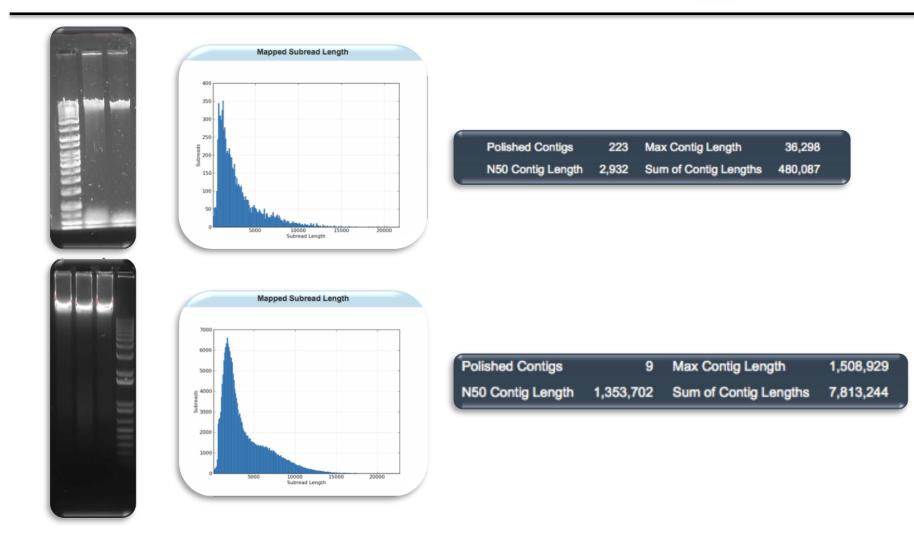






#### NanoDrop:

260/280 = 1.8 - 2.0260/230 = 2.0 - 2.2


### **Qubit or Picogreen:**

10 kb insert libraries: 3-5 ug 20 kb insert libraries: 10-20 ug

## **Example:**







## What do absorption ratios tell us?

### Pure DNA <u>260</u>/280: 1.8 – 2.0

### < 1.8:

Too little DNA compared to other components of the solution; presence of organic contaminants: proteins and phenol; glycogen - absorb at 280 nm.

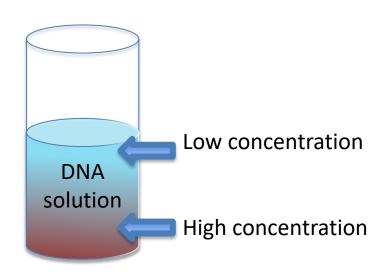
#### **> 2.0**:

High share of RNA.

### Pure DNA <u>260</u>/230: 2.0 – 2.2

**<2.0**:

Salt contamination, humic acids, peptides, aromatic compounds, polyphenols, urea, guanidine, thiocyanates (latter three are common kit components) – absorb at 230 nm.


### **>2.2**:

High share of RNA, very high share of phenol, **high turbidity**, dirty instrument, wrong blank.

Photometrically active contaminants: phenol, polyphenols, EDTA, thiocyanate, protein, RNA, nucleotides (fragments below 5 bp)

# How to make a correct measurement

- Thaw DNA completely
- Mix gently (never vortex!)



- Put the sample on a thermoblock: 37°C, 15-30 min
- Mix gently
- **Dilute 1:100** (if HMW)
- Mix gently
- Make a measurement with an appropriate blank
- NANODROP is Bad. Point.
- Use Qubit, or PicoGreen.

### Let's get philosophical

## Since the beginning of Genomics:



First genome: virus  $\phi$  X 174 - 5 368 bp (1977)



First organism: Haemophilus influenzae - 1.5 Mb (1995)

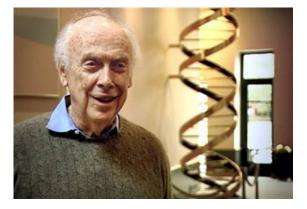


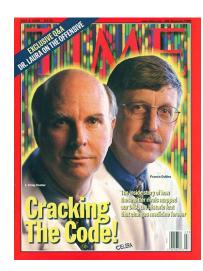
First eukaryote: Saccharomyces cerevisiae - 12.4 Mb (1996)



First multicellular organism: Cenorhabditis elegans - 100 MB (1998-2002)




First plant: Arabidopsis thaliana - 157 Mb (2000)


### ... prices go down


Human genome project, 2007

- Genome of Craig Wenter costs 70 mln \$

- Sanger's sequencing
- Genome of James Watson costs 2 mln \$
  - 454 pyrosequencing
- Ultimate goal: 1000 \$ / individual
   Almost there! (1200 \$)

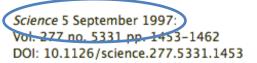






## ... paradigm change

- From single genes to complete genomes
- From single transcripts to whole transcriptomes
- From single organisms to complex metagenomic pools
- From model organisms to the species you are studying
- Personal genome = personalized medicine










## ... scientific value diminishes



ARTICLES

IF 31.6

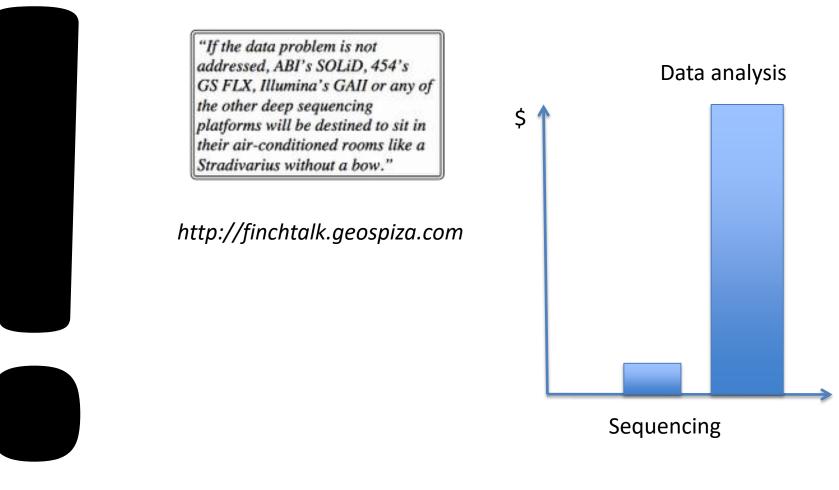
< Prev | Table of Contents | Next >

#### The Complete Genome Sequence of Escherichia coli K-12

Frederick R. Blattner<sup>\*</sup>, Guy Plunkett III<sup>\*</sup>, Craig A. Bloch, Nicole T. Perna, Valerie Burland, Monica Riley, Julio Collado-Vides, Jeremy D. Glasner, Christopher K. Rode, George F. Mayhew, Jason Gregor, Nelson Wayne Davis, Heather A. Kirkpatrick, Michael A. Goeden, Debra J. Rose, Bob Mau and Ying Shao

Journal of Biotechnology Article in Press, Corrected Proof - Note to users IF 2.9

doi:10.1016/j.jbiotec.2010.12.018 | How to Cite or Link Using DOI


Permissions & Reprints

### The complete genome sequence of the dominant *Sinorhizobium meliloti* field isolate SM11 extends the *S. meliloti* pan-genome

Susanne Schneiker-Bekel<sup>a</sup>, Daniel Wibberg<sup>a</sup>, Thomas Bekel<sup>b</sup>, Jochen Blom<sup>b</sup>, Burkhard Linke<sup>b</sup>, Heiko Neuweger<sup>b</sup>, Michael Stiens<sup>a, c</sup>,

Frank-Jörg Vorhölter<sup>a</sup>, Stefan Weidner<sup>a</sup>, Alexander Goesmann<sup>b</sup>, Alfred Pühler<sup>a</sup> and Andreas Schlüter<sup>a, 🍐 🛸</sup>

### Main challenge - DATA **ANALYSIS** and DATA **STORAGE**



=> More bioinformaticians to people!

### What we sequenced at SciLifeLab



Diabetes

Alzheimer

165 amplicon, Acinetobacter baumanii, Acrasis kona, Acridotheres Javanicus, Actinobacillus succinogenes, African swine fever virus, Agaricomycotina sp. **Alces alces, Alligator mississippiensis**, Amphiura filiformis, Apis mellifera, Aquila chrysaetus, Arabidopsis thaliana, Arabis alpina, Archaeorhizomycetes finlayi, Archoeophalus gazella, artificial sequences, Arucola amphibus, Ascarida galli, Aspergillus oryzae, Astrapis stephaniae, Atlantic herring, Atlantic salmon, **Avena sativa**, Baccharis breviseta, Baccharis dracunculifola, Bacteriophages, Balaenoptera musculus, Gandida intermedia, Candida parapsilosis, Candidatus, Candida intermedia, Candida parapsilosis, Cadidatus herorhylla, Coregonus lavaretus, Coronavirus, Corvus corone, Corvus monedula, Crassostrea gigas, Crieculus griesus, Cryptococcus tephrensis, Cubanola dominguensis, Cytomegalovirus, Danio rerio, Datissa glomerata, Deformavirus, Escherichia coll, Eunerynostomum macrobursalium, Euphorbia peplus, Elpieters artem, Eques costalius, Escherichia cubic, Scherein harce nuo macrobursalium, Euphorbia peplus, Elpieters artem, Eques cabalis, Escherichia cubic, Escherichia cubicase, Escherico adia cubic, Escherichia cubic, Escherica battor

## Good reading:

| OPEN ACCESS                                |                           |                                                                                              |          |                 |              |               |  |
|--------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------|----------|-----------------|--------------|---------------|--|
| OMMUNITY PAGE                              |                           |                                                                                              |          |                 | 388<br>Save  | 3<br>Citation |  |
| A Field Guide<br>Andrea H. Bild 🖬, Jeffrey | 35,557<br>View            | 548<br>Share                                                                                 |          |                 |              |               |  |
| ublished: January 7, 201                   | 4 • http://dx.doi.org/10. | .1371/journal.pbio.10                                                                        | 01744    |                 |              |               |  |
| Article                                    | Authors                   | Metrics                                                                                      | Comments | Related Content | Download     | PDF 👻         |  |
| ×                                          | -                         |                                                                                              |          |                 | Print        | Share         |  |
| The Farmer                                 |                           |                                                                                              |          |                 | ( CrossMark  |               |  |
| The Gold Miner                             | Figures                   |                                                                                              |          |                 |              | 6             |  |
| The Cowboy                                 | -                         |                                                                                              |          |                 | Subject Area |               |  |
| he Hermit                                  |                           | 100-0                                                                                        | 11 - Y   |                 | Genome anal  | vsis          |  |
| The Master and the<br>Servant              |                           |                                                                                              |          |                 |              |               |  |
| he Jailer                                  |                           | SI /m                                                                                        | 55.71    | Sec.            | Genomics     | 0             |  |
| anger Warning                              | V                         |                                                                                              |          | 1 1 K           | Experimental | design        |  |
| uthor Contributions                        |                           |                                                                                              | • •      |                 | Scientists   | 0             |  |
| References                                 |                           |                                                                                              |          |                 | Farms        | 0             |  |
|                                            |                           |                                                                                              |          |                 | Genomic data | abases (      |  |
| Reader Comments (0)                        | Citation: E               | Biologists                                                                                   | 0        |                 |              |               |  |
| /ledia Coverage (0)                        | Genomics                  | Genomics Research. PLoS Biol 12(1): e1001744. doi:10.1371/journal.pbio.1001744               |          |                 |              |               |  |
| Figures                                    | Academic<br>America       | Academic Editor: Jonathan A. Eisen, University of California Davis, United States of America |          |                 |              |               |  |

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001744

## SciLifeLab

TECHNOLOGIES & SERVICES  $\checkmark$ 

**RESEARCH ★** EDUCATION ★

COLLABORATION V

Find more information and search for what you need on the page for Technologies & Services

What is the difference between national and regional facilities?

#### National facilities

SciLifeLab

#### **Affinity Proteomics**

Biobank Profiling Cell Profiling Fluorescence Tissue Profiling PLA Proteomics Protein and Peptide Arrays Tissue Profiling

#### Bioimaging

Advanced Light Microscopy Fluorescence Correlation Spectroscopy

#### **Bioinformatics**

Bioinformatics Compute and Storage (UPPNEX) Bioinformatics Long-term Support (WABI) Bioinformatics Short-term Support and Infrastructure (BILS)

#### Chemical Biology Consortium Sweden

Laboratories for Chemical Biology Umeå (LCBU) The Laboratories for Chemical Biology at Karolinska Institutet (LCBKI) Uppsala Drug Optimization and Pharmaceutical Profiling (UDOPP)

#### Clinical Diagnostics

Clinical Biomarkers Clinical Genomics Clinical Sequencing

#### Q Search for Technologies & Services

#### Drug Discovery and Development

ADME (Absorption Distribution, Metabolism Excretion) of Therapeutics (UDOPP)

Biochemical and Cellular Screening Biophysical Screening and Characterization

Human Antibody Therapeutics In Vitro and Systems Pharmacology Medicinal Chemistry – Hit2Lead

Medicinal Chemistry – Lead Identification

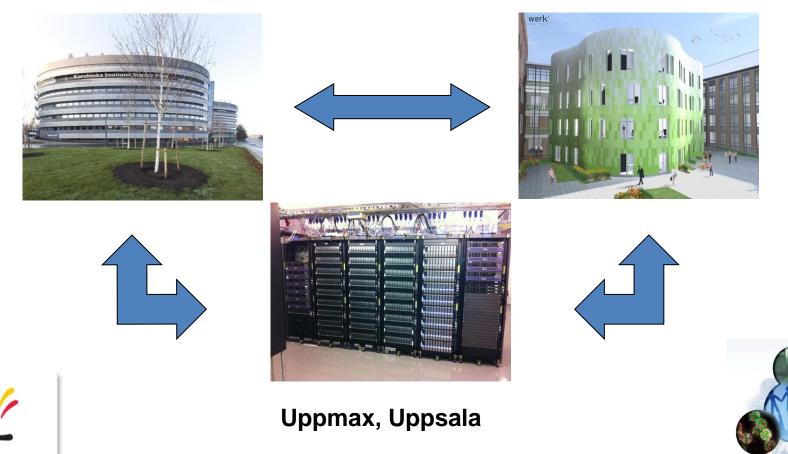
Protein Expression and Characterization

#### **Functional Genomics**

Karolinska High Throughput Center (KHTC)

#### National Genomics Infrastructure

NGI Stockholm (Genomics Applications) NGI Stockholm (Genomics Production) NGI Uppsala (SNP&SEQ Technology Platform) NGI Uppsala (Uppsala Genome Center)


#### Structural Biology

Protein Science Facility

### **National Genomics Infrastructure**

### SciLifeLab, Stockholm

### SciLifeLab, Uppsala



Vetenskapsrådet

NGI-SciLifeLab is one of the most well-equipped NGS sites in Europe



- 10 Illumina HiSeq Xten
- 17 Illumina HiSeq 2500/4000
- 3 Illumina MiSeq
- 1 Illumina NextSeq
- 2 Ion Torrent
- 1 Ion S5
- 5 Ion Proton
- 2 PacBio RSII
- 1 PacBio SEQUEL
- 1 Sanger ABI3730
- 1 Argus Whole Genome Map. Syst.
- 1 BioNano Irys
- 2 Oxford Nanopore MinIon
- 2 Chromium 10x



Next-Generation Sequencing and Genotyping for Swedish Research

#### NGI Sweden Order Portal

This portal is for submitting orders for services provided by the National Genomics Infrastructure Sweden (NGI). To make an order, please log in and choose the application most suitable for your project. If uncertain about the choice of technology, please select the "Request a meeting" option. You can read more about the different technologies and How to place an order under "Information" in the menu at the top of the page.

Projects from other countries are admissible, but have lower priority than projects performed by researchers based in Sweden. Depending on the queue situation, NGI may decide to decline a non-Swedish project altogether.

#### Summer Order & Sample Submission Dates

Subscribe to our mailing list:

All NGI facilities will be closed for sample submission over the summer from **1 July to 8 August**. To make sure you will be able to submit your samples before 1 July your order must be submitted no later than **24 June**. Orders submitted from 24 June to 8 August will not be processed until after 8 August.

Subscribe

vour email address

|                                 |                  |                        |  | , nou                                                                                                                      | your officin addrood            |            | Cuboonbo |                |
|---------------------------------|------------------|------------------------|--|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------|----------|----------------|
| Pending accounts                |                  |                        |  | Reques                                                                                                                     | it a meeting                    |            |          | + Create orde  |
| Currently none.                 |                  |                        |  | If you are unsure about the appropriate method for your scientific problem, request<br>a meeting for a discussion with us. |                                 |            |          |                |
| Recently submitted orders       |                  |                        |  | Illumina                                                                                                                   | Sequencing                      |            |          | + Create order |
| Al Gazali translocation         |                  | 2016-05-25<br>09:15:53 |  | Order fo                                                                                                                   | orm for Illumina sequencing.    |            |          |                |
| Neurospora spore killer CHiPseq | Length Submitted | 2016-05-25<br>09:15:50 |  | lon Seq                                                                                                                    | uencing                         |            |          | + Create order |
| SW and lys SKD                  | Length Submitted | 2016-05-25<br>09:09:50 |  | Order fo                                                                                                                   | orm for sequencing by Ion Proto | n or Ion S | S5XL.    |                |

### https://ngisweden.scilifelab.se/

### What happens then?

### NGI Project coordinators meet twice a week via Skype





Ulrika Ellenor Liljedahl Devine SNP&SEQ, Uppsala node



**Mattias** 

Ormestad



Beata

Stockholm Node



Werne Solenstam Olga n Node Vinnere Pettersson JGC, Uppsala Node

Project distribution is based on:

- 1. Wish of Pl
- 2. Type of sequencing technology
- 3. Type of application
- 4. Queue at technology platforms

Project is then assigned to a certain node and a coordinator contacts the PI

### **Project meeting**

### What we can help you with:

- Design your experiment based on the scientific question.
- Chose the best suited application for your project.
- Find the most optimal sequencing setup.
- Answer all questions about our technologies and applications, as well as bioinformatics.

 In special cases, we can give extra-support with bioinformatics analysis – development of novel methods and applications

### **QUESTIONS?**