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Outline
m Why sequence transcriptome?
m From RNA to sequence
m The most common way: reference based analysis pipeline
m What about de-novo assembly of transcriptomes?
m And what about scRNA-seq?
m Introduction to exercises
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Why sequence transcriptome? Overview
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Why sequence transcriptome? Overview

An RNA sequence mirrors the sequence of the DNA from
which it was transcribed.

Consequently, by analyzing transcriptome we can determine
when and where each gene is turned on or off in the cells and
tissues of an organism.
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Why sequence transcriptome? Overview

What can a transcriptome tell us about?
B gene sequences in genomes
m gene functions
m gene activity / gene expression
m isoforms and allelic expression
m fusion transcripts and novel transcripts
m SNPs in genes
m co-expression of genes
m cell-to-cell heterogeneity (scRNA-seq)
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Why sequence transcriptome? Overview

Transcriptomes are:

dynamic, that is not the same over tissues and time points

directly derived from functional genomics elements, that is
mostly protein-coding genes, providing a useful functionally
relevant subset of the genome, translating into smaller
sequence space
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Why sequence transcriptome? Overview

Overview
m Experimental design (biology, medicine, statistics)
m RNA extraction (biology, biotechnology)
m Library preparation (biology, biotechnology)
[ |

High throughput sequencing (engineering, biology, chemistry,
biotechnology, bioinformatics)

Data processing (bioinformatics)
Data analysis (bioinformatics & biostatistics)
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From RNA to sequence Workflow
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From RNA to sequence

Workflow
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From RNA to sequence fastq

© 00 (| fastq — less — 195x69

@HWI-ST0866_0110:5:1101:1264: 20004GATCAG/1
AGGCACTCCCTGCAGGTGTTGGACCACCTGGCTGAGCCACAGCGTCGCTTCCTGCTGCCAGGGCCTC TGTGGAGACACTGTGGGAGCA
+HWI-STOB66_0110:5:1101: 1264 : 2000#GATCAG/ 1
~_P\"ccceeceeeee [b[beedaae_fdddde_cfhheedfeeh__"aeadd’ d]baccc\ [TKT\]_\ZQT~a[W[**aW' ~* aX*X~* _Y]~aBBB8
@HWI-ST0866_011 1:1418: 2201#GATCAG/1
TCTTTATTGGCATCAGGCATCACCACACCATGGTTCTTGGCTCCCATGTTGGCCTGGACTCTCTTGCCATTCCGGGATCCTCTCTCATAGATGTACTCGE
~mu ~ST0866_0110:5:1101:1418: 22014GATCAG/1

fohfffhifhhfhegreeffgfegf fahhhffhhggadcX [ bbbbbbbbbcbbbcbR]aabaa
@mu ST0866_011 1:1561: 22324GATCAG/1
CCOAAACCCCGAAAGCACCCCARAATCCCTGTGGGGAACCCCGAAAATCCCGARATTACCCCAARATACCTGTGGGATACCCTGAARACCCGARAGEACT
+HWI-STOB66_0110:5:1101:1561: 2232#GATCAG/1

__[VI\""\e[eefdgbafagfffagfd'Rc[cac'a_ef[a_N']aced]\X]Z*RGYYYXa~_''bb_YYYbBBBBBBBBBBBBBEEEBBBEB888EE
@HWI-STOB66_0110:5:1101:1675: 22464GATCAG/1
GCTCAAGTCCCGGAGGAGGTCAGAGCTGGCATCTCTTCCCCAGETGCTECTC \AGCACCTGCAAACAGCTGCCAGCCAGGGAGCTGTGACTT
+HWI-STOB66_0110: 1:1675 zzasxsncm/;

3\ accccec [eagag" gggedbf fhh
GMI-STOB66.0110:5: 1101:1752120754CATCAG/ 1
CAGCNGCTCTGGGCACCCTGTGCCAGGGCNTGNCCACCCTCCCAGCCAAGAATTCCTTCCCNATATCTAACCCARATTTCTTCCCNGTAGGAGCAGGATG
+HWI-STOB66_0110:5:1101:1752: 20754GATCAG/1
Z_[aBOQQ’ ccace_d_Y' a_Xé~ecc] fBPYBOYacedeZeVRbWVW\_\bcS\bdde  VBKKT~accab] GT\Z_YY" " _]YGBKKWWO] * _W~ [W_R
@HWI-5TOB66_011 101:1888: 2141#GATCAG/1
CAGATGAGGACTTTTGCTCCAAA CTCAGTCC Teee C CCTTTG
+HNI-STOB66_011 101:1888: 21414GATCAG/1

$ihiii§98999383385389389385385385hi11inighiiniing
@HWI-STOB66_0110:5:1101:1930: 21724GATCAG/1
AT T TAARACAGAGGCCTGTGACAGACTCTTGGCCCATC TG TTGATACTARAATGARAGGAAACAAAGTGARTGAAGTACTGARTAGATTACACT
+HWI-STOB66_0110:5:1101:1930: 21724GATCAG/
~_atcccegegghhgZe’ ghhchegagd™_ [a]a:fmm*z*nxmu*m;nw;n H_cbdbbd\dbddV~_ZRMHHZGUZ_b_YRTGTT] __|
@HWI-STOB66_0110:5: 1101:1945: 21834GATCAG/1
CTCACGATGGTCCCCAGGCTGTCCACAGTTGCCACACACTGATAATATCCTTCATCAGGTTTATTATGCTTGGAATGCACCACACTGTTAATTAATAAAG
+HWI-STOBG6_0110:5:1101: 1945 nez:cnus/

_cce\cey' ~ae'Z_"bR' bl fald fd" eW\; “R\_aa_c]b\baaz accdc[*]a'a
@HWI-STOBE6_011 101:1020: 2205 4GATCAG/ 1
GCCAGTACAGCTGTAGTAETETGTCCTYCECATCCGTGEC(ATGTGAEACAGCAGGTTCACAGCATGGTGACEAGTTTGAAGCTTCCTACCT(TI:TGI:TA
+HNI-ST0B66_0110. AG/1

¢ ddgbd]_“abbbb__*ababbGXY_[aa*'a00T [* bbGYYS

221
Thhindhiitithii iighiiiiiiiiiiiihiihghiiiiii e
@HWI-ST0866_011 10112095 21674GATCAG/ 1
GTTCAGACAAGTTCGATCTCTTGTGCATCGACTGTGCTGGATGATAGTTTTTCAGTGAGTATTATGGTTAGTAGATATAGTACCAGGCTGCAAATAGCTA
+HWI-STOB66_0110:5:1101:2005: 2167#GATCAG/1
aP hih hhiiiihhiih hihiiiehhiiifhhibfaedfhiiifghih____dgeeddgeeeeeddc_bbccccbb
@HWI-STOB66_0110:5:1101:2494: 21314GATCAG/1
CTCGAAATCCAGGGCAACGTAGCACAGCTTCTCCTTGATGTCACGCACAATTTCTCTCTCAGCTTGGTGGTGAAGCTGTAGCCTCTCTCTGTCAGGATC
+HWI-STOB66_0110:5:1101:2494: 2131#GATCAG/1
_aseceeegggggdfofinghffhhhiiihffeiiiiiihihhfiigghdgdhffhiiifdhihd' ~bVraabb_bdc_]bZ' becccceceeb] bee
@HWI-STOB66_0110:5:1101:2424:22174GATCAG/1
TAACAGTCCCCCTGGTATGAAATGGCACCTTGGTTACAC TTACAGGGAGTAATTTTCATGTGTAACTGGGGTT,
+HNI-ST0B66_0110: 01:2424:2217#GATCAG/1
hPa(eeegfgg(ghfgfhhxxuxxffh fghghhfhhhgfghfcghhiT_bdddddeeeeaac’ bbcccb' cb® cbbe® cebeccaachbbbeaacce
@uwx ST0866_0110: 1:2485: 2220#GATCAG/ 1

TGATCAACTTT TTCGAAGTCATCGCGCAGATCAAGCTGCTCCAGTCGGCCTGCAACAACTACAGCTTC
mwz-sraess_ana. :1101:2485: 22204GATCAG/1
_ i1i1ii4i iiiiiiiigghhhhihiiiiiih
@HWI-STOB66_011 101:2476: 2244#GATCAG/ 1
CAGTACTCTTTGTACCGCTCATCTGCATCTCCAAACACTTTGTACCTGCTGCCTTTTATTTTGTATGTTTACCTGTGTCAGAGAGTCGCCAAGTTTGTTC
+HWI-STOB66_0110:5:1101: 2476 2244#GATCAG/1
ihii gffhfhiiihi iggbg' gfdg’ baddeade" 1 _z~Y [Ibcbech
101: 25021 21894GATCAG/1
= GGGATAATGR craccea 3 GTECTRAT
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From RNA to sequence fastq

fastq

@MISEQ:233:000000000-AGJP2:1:1101:15260:1358
CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT
+

BBBBBFFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

m Linet:
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From RNA to sequence fastq

fastq

@MISEQ:233:000000000-AGJP2:1:1101:15260:1358
CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT
+

BBBBBFFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

m Line1: begins with a '@’ character and is followed by a sequence
identifier and an optional description

m Line2:
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From RNA to sequence fastq

fastq

@MISEQ:233:000000000-AGJP2:1:1101:15260:1358
CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT
+

BBBBBFFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

m Line1: begins with a '@’ character and is followed by a sequence
identifier and an optional description

m Line2: is the raw sequence letters
m Line3:
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From RNA to sequence fastq

fastq

@MISEQ:233:000000000-AGJP2:1:1101:15260:1358
CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT

+
BBBBBFFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

m Line1: begins with a '@’ character and is followed by a sequence
identifier and an optional description

m Line2: is the raw sequence letters

m Line3: begins with a ’+’ character and is optionally followed by the
same sequence identifier (and any description) again

m Line4:
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From RNA to sequence fastq

fastq
@MISEQ:233:000000000-AGJP2:1:1101:15260:1358
CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT

+
BBBBBFFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

m Line1: begins with a '@’ character and is followed by a sequence
identifier and an optional description

m Line2: is the raw sequence letters

m Line3: begins with a ’+’ character and is optionally followed by the
same sequence identifier (and any description) again

m Line4: encodes the quality values for the sequence in Line 2, and
must contain the same number of symbols as letters in the
sequence
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From RNA to sequence Quality score

Phred Quality Score
m Q=-10xlogP
m where:

m P, probability of base calling
being incorrect

m High Q = high probability of
the base being correct

m A Phred quality score of 10 to a base means that the base is
called incorrectly in 1 out of...
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From RNA to sequence Quality score

Phred Quality Score
m Q=-10xlogP
m where:

m P, probability of base calling
being incorrect

m High Q = high probability of
the base being correct

TAAGC TCTGAGAGCAAACC TC
a2 100 118

m A Phred quality score of 10 to a base means that the base is
called incorrectly in 1 out of...10 times.

m A Phred quality score of 20 to a base, means that the base is
called incorrectly in 1 out of...
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From RNA to sequence Quality score

Phred Quality Score
m Q=-10xlogP
m where:

m P, probability of base calling
being incorrect

m High Q = high probability of
the base being correct

TAAGC TCTGAGAGCAAACC TC
a2 100 118

m A Phred quality score of 10 to a base means that the base is
called incorrectly in 1 out of...10 times.

m A Phred quality score of 20 to a base, means that the base is
called incorrectly in 1 out of...100 times.

m A Phred quality score of 30 to a base, means that the base is
called incorrectly in 1 out of...
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From RNA to sequence Quality score

Phred Quality Score
m Q=-10xlogP
m where:

m P, probability of base calling
being incorrect

m High Q = high probability of
the base being correct

TAAGC TCTGAGAGCAAACC TC
a2 100 118

m A Phred quality score of 10 to a base means that the base is
called incorrectly in 1 out of...10 times.

m A Phred quality score of 20 to a base, means that the base is
called incorrectly in 1 out of...100 times.

m A Phred quality score of 30 to a base, means that the base is
called incorrectly in 1 out of...1000 times etc...
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From RNA to sequence SE/PE

PE, paired-end
m Two .fastq files are created per sequenced library

m The order of reads in files is identical and naming of reads is the
same with the exception of the end information

m The way of naming reads are changing over time so the read
names depend on software version

@61DFRAAXX100204:1:100: 10494 :3070/1
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT
+
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@BRCACCCCCA

@61DFRAAXX100204:1:100:10494:3070/2
ATCCAAGTTAAAACAGAGGCCTGTGACAGACTCTTGGCCCATCGTGTTGATA
+

_A_aAcccegegghhgZc® ghhcAegggdA_[d]defcdfdAZAOXWaQAad
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SE

PE

From RNA to sequence Strandness

F: the single read is in the sense (F,
forward) orientation

RNA 3

R: the single read is in the
antisense (R, reverse) orientation

RF: first read (/1) is sequenced as
anti-sense (R) & second read (/2) is
in the sense strand (F)

FR: first read (/1) is sequenced as
sense (F) & second read (/2) is in
the antisense strand (R)

Olga (NBIS) RNA-seq
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RNA-Seq reads
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Reference based data analysis pipeline Overview

Main steps
m Initial processing incl. QC
m Aligning reads to reference genome
m Counting reads
m Differential gene expression
m Further analysis
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Reference based data analysis pipeline Initial processing

Initial processing incl. QC

m Demultiplex by index or
barcode

m Remove adapter

sequences x
m Trim reads by quality .
m Discard reads by .

quality/ambiguity

123456789 1213 1819 24-25 30-3L 36-37 4243 48-49 54-55 60-61 66-67 72-73 78-79 B6-87 92.93 98-99
Fosition in read (bp}

Available tools
FastQC, PRINSEQ, TRIMMOMATIC, TrimGalore, FastX, Cutadapt
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Reference based data analysis pipeline Initial processing

Initial processing incl. QC

Mean Quality Scores

Phred Score

o 20 a0 &0 80 100 120 140 160 180
Position (bp)

m filtering reads for quality score, e.g. with avg. quality below 20 defined within
4-base wide sliding window

m filtering reads for read length, e.g. reads shorter than 36 bases
® removing artificial sequences, e.g. adapters
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Reference based data analysis pipeline Aligning reads

Aligning reads: mappers

m important to use mappers allowing for a read to be "split" between distant
regions of the reference in the event that the read spans two exons

m lots of different aligners exists based on various algorithms e.g. brute force
comparison, Burrows-Wheeler Transform, Smith-Waterman, Suffix tree

m usually there is a trade-off between speed versus accuracy and sensitivity

m usually the "biggest difference" is with default settings, most mappers will allow
to optimize settings

m performance vary by genome complexity

A good read: Barruzo et. al. Nature Methods 14, (2017)
httos.//www.nature.com/articles/nmeth.4106

Available tools
STAR, HISAT, MapSlice2, Subread, TopHat
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Reference based data analysis pipeline Aligning reads

Aligning reads: reference files

.fasta (download reference genome FASTA file)

& g LI S

=1 dna chr‘omosorne chr‘omosome GRCm38:1:1:195471971:1 REF

Lt gt 41 gt gt gt gt gt 0t g g8 g0 gt gt o gt gt gt o gt gt g g g gt gt 0t T g 48 g0 o gl gt gt gt gt gt 1)
NN RNNNSNNNNNNNNNNNNNNNN NN
Lt gt g1 gt gt gt gt gt T gt g0t g 0t gt ) g8 g gt gt o g g1 g g1 g0 gt g0 T T g g gl gt gt g gt gt 1)
NN NN
NMMMIININNNRMNRNININRNNNNNNRNRRRNNSRNR RN NNNNNRNNNRNNNNRNNNRNNRRNNSNN

#!genome-build GRCM3S.pad
#!genome-version GRCm38

#!genome-date 2012-81
#!genome-build-accession NCBI:GCA_808@81635.6

#!genebuild-last-updated 2015-87
havana gene 3973253 3074322 . gene_ id " ENSMUSGMMMBESQB ; gene_version "1"; gene_name "493349

1
1JB1Rik"; gene_source "havana"; gene_biotype " TE[ havana _gene "0TIMUSG@@@ABBAS935"; havana_gene_version "1";
havana transcript 3073253 3074322 . + gene_id "ENSHUSGOBBO102693"; gene_version “1%; transcrip
"; gene_name "4933491391R1k", gene_source "havana"; gene_| bmtype "TEC"; havana_ge
3 transcript_name "4933481J@1Rik-001"; transcript_source "havana"; transcript_bio
transcript_support_level “"NA";

t_id "ENSMUST%%MQBSH", transcript_version
ne O'I'MUSG%%ONQQBS havana_gene_version "
type "TEC"; havana_transcript "OTTMUSTG@@88127189"; havana transcript version "1"; tag "basic";

Source
ENSEMBL, NCBI

.gtf (download the corresponding genome annotation in GTF or GFF)
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Reference based data analysis pipeline Aligning reads

Aligning reads: QC

complete_novel 18%

_P2761_201 .|
|}
_P2761_203 ]
_P2761_205 _- partial_novel 4%
L
_P2761_207 {1
[}
_P2761_209 -
I
_P2761_211 ||
-
_P2761_213 -
L
_P2761_215 _—
[l
_P2761_217 {1
L
_P2761_219 1
-
0 20 40 60 80 100 Kknown 78%
Percentages
Exonic [l Intronic Intergenic

Post mapping QC, e.g. reads should mostly map to known genes,
most splice event should be known and canonical (GU-AG)
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Reference based data analysis pipeline Counting

Counting reads

chrl:4,487,995-4,498,791 o B « » @O = 2 | =R

— e ———— BN e e

qF qCll qCi.2  qC2 a3 qta qcs qab QELT  qE21 qE23  qE3  qEd qF  qGl qG63  qH2.1 CLE
10 kb

190 kb 4402k 4,494 kb 4,496 kb
1 1

sox17

Available tools
HTSeq, featureCounts, R J
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Reference based data analysis pipeline Counting

Counting reads

intersection
union _strict
read
gene_A gene_A gene_A
d
gene A = gene_A no_feature
=
gene_A mmmm gene_A gene_A no_feature
read read
AR S R Ceov) gene_A gene_A
read
gene s gene_A gene_A
gene B
read
gone_A ambiguous gene_A
gene_B !
read
(e ambiguous ambiguous
cene B

intersection
_nonempty

gene_A

gene_A

gene_A

gene_A

gene_A

gene_A

ambiguous

from: http://www-huber.embl.de/users/anders/HTSeqg/doc/count.html
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Reference based data analysis pipeline Counting

Counting reads

o . sy

A B C D E F G H 1 J K L M [¥] P
1 Transcript P1822 1 P1822 2 P1822 3 P1822.4 P1822 5 P1822 6 P1822 7 P1822 8 P1822 9 P1822 10 P1822 11 P1822 12 P1822 13 P1822 14 P1822 15 P1822 16
2 |ENSMUSG00000102693 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 ENSMUSG00000088000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 ENSMUSG00000103265 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
32 ENSMUSG00000103922 7 7 7 4 1 12 3 6 14 3 9 3 9 7 9 7
33 ENSMUSG00000033845 972 860 878 1085 1058 1009 992 1143 947 1059 970 1147 801 837 1042 927
34 ENSMUSG00000102275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 ENSMUSG00000025903 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 ENSMUSG00000104217 16 13 17 16 2 17 1 27 1 5 12 15 8 9 9 12
37 ENSMUSG00000033813 2560 2581 2937 3904 2975 3100 3027 3417 272 2801 2266 3294 2481 2578 2554 2806
38 ENSMUSG00000062588 3 1 1 1 0 1 0 3 3 0 4 0 2 1 0 0
39 ENSMUSG00000103280 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0
40 ENSMUSG00000002459 7 10 5 7 4 6 3 8 2 5 7 8 1 5 4 1
41 ENSMUSG00000091305 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42  ENSMUSG00000102653 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43  ENSMUSG00000085623 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
44 ENSMUSG00000091665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45  ENSMUSG00000033793 3682 3757 4414 5978 3774 4102 3815 4250 4193 4962 4240 5694 3565 3757 3849 4094
46  ENSMUSG00000104352 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 |ENSMUSG00000104046 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
48  ENSMUSG00000102307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
49  ENSMUSG00000025305 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
50 ENSMUSG00000103936 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
51 ENSMUSG00000093015 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
52 ENSMUSG00000103519 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53 |ENSMUSGO00000033774 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
54 ENSMUSG00000103090 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
55 ENSMUSG00000025907 1816 2087 2088 2820 2012 2236 2065 2721 2586 2931 2813 3667 2410 2739 2479 2745
56 ENSMUSG00000090031 3 58 55 B 38 38 57 9% 89 107 98 123 76 %3 66 69
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Reference based data analysis pipeline Counting

Normalizing counts

Gene counts depend e.g. on sequencing depth of a sample
and on the sequence length of the gene/transcript. Raw read
counts cannot be used to compare gene expression across
libraries.

Normalization methods
m CPM, counts per million, accounts for sequencing depth

m RPKM/FPKM, Reads/Fragments Per Kilobase Per Milion accounts
for sequencing depth and transcript length

m TMM, Trimmed Mean of M-values, accounts for sequencing depth
and transcript length and composition of the RNA population

m and few other using scaling factors methods...
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Reference based data analysis pipeline Differential expression

Differential gene expression

Population \

Statistics

Sample —/

Outcome; = (Model;) + error;

m we collect data on a sample from a much larger population. Statistics lets us to
make inferences about the population from which it was derived

m we try to predict the outcome given a model fitted to the data
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Reference based data analysis pipeline Differential expression

Differential gene expression

in RNA-seq case:

o m we take the normalized read counts

Spy /7t s m and we perform statistical analysis
to discover quantitative changes in
expression levels between

experimental groups

m e.g. to decide whether, for a given
gene, an observed difference in
read counts is significant, that is,

120 whether it is greater than what

heightem] would be expected just due to

natural random variation.

Frequency
3
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Reference based data analysis pipeline Differential expression

Differential expression

Usually, reads counts do not follow normal distribution & we
work with low number of biological replicates

DE methods
m Discrete distribution models, e.g. edgeR, DESeq2
m Continuous discrete models, e.g. t-test
m Non-parametric model, e.g. SAMseq

0 1000 2000 3000 400 5000 6000
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Reference based data analysis pipeline Differential expression

Differential expression

| A B
ensembl_gene_id ensembl_transcript_id
ENSMUSGO00000028328 ENSMUST00000107773
ENSMUSGO00000066705 ENSMUSTO0000085939
ENSMUSG00000049112 ENSMUSTO0000053306
ENSMUSGO00000017446 ENSMUST00000124861
ENSMUSG00000029123 ENSMUST00000094836
ENSMUSG00000009378 ENSMUST00000009522

ENSML 1
ENSMUSGO00000029671 ENSMUST00000128245
ENSMUSG00000042190 ENSMUSTO0000047936
ENSMUSG00000028035 ENSMUST00000134701
ENSMUSGO0000048960 ENSMUST00000027056

ENSML

G

chromosome_name mgi_symbol

Tmod1
Fryd6
Oxtr
Clatnfl
5tk32b
Slcl6al2
Mmp19
Wnt16
Cmkirl
Dnajb4
Prex2
Angptld.

E 3
description logFC
tropomodulin 1 [Source:MGl Symbol;Acc:MG1:98775] 1971089
FXYD domain-containing ion transport regulator 6 [Source:MGI SymbolAct  3.18062
oxytocin receptor [Source:MGI Symbol;Acc:MGI:109147] 3.820952
C1q and tumor necrosis factor related protein 1 [Source:MGl SymbolAcc:h 1484213

fthreonine kinase 328 [Sourc 552] 3453001
solute carrier family 16 (monocarboxylic acid transporters), member 12 [S¢ 4.173029
matrix 19 [Source:MGI Symbol, 27899] 1.940915
wingless-type MMTV integration site family, member 16 [Source:MGI Sym| 2.339149
chemokine-ike receptor 1 [Source: MGl Symbol;Acc:MG1:109603] 2518748

Dnal (Hsp40) homolog, subfamily B, member 4 [Source:MGI SymboliAcc:M  1.417856
4, -dependent R; hange factor 2 1.706461
angiopoietin-like 4 [Source:MGl Symbol;Acc:MGl: 1888999] -1.73049

G
logCPM
5.958225
5.916499
3.423774
7.145099
2321613

3.89466
8.973932
5.673738
3.540638
7.292192
6.676335
7.972378

H

R
581.2916
553.8787
375.1689
345.7577
338.7155
335.706
328.4969
315.6779
305.0157
297.1316
283.7963
282.7705

1
PValue
1.96E-128
1.80E-122
1.40E-83
3.56E-77
122875
5.50E-75
204673
127870
2.66E-68
1.39E-66
1.12E-63
187663

The likelihood of observing a significant p-value increases as we do more
tests, i.e. testing more than one gene. Modern FDR adjustment techniques
take into account of background expectation of a uniformly distributed
p-values and adjust their values accordingly to how significantly different

things are, so the p-values from multiple testing can be interpreted more

accurately.
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J
FOR
279E-124
1.28e-118
6.65E-80
1.26E-73
346E-72
1.30E-71
4.15E-70
2.25E-67
4.20E-65
1.98E-63
1.44E-60
222660
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Reference based data analysis pipeline Differential expression

Differential expression

ENSMUSGO00000014873 + FBs24 FBs4a8
200
—
=] .
% 150 _
= "
= N
Ll 100 -1 N
0d — — = __—
E/OID;L | 7777 E707 | EO‘M@
26916367 T 26917215 26918063 26918911 26919759

Available tools
edgeR, DEXSeq J
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Reference based data analysis pipeline Further analysis

Further analysis

I'EEREEERE

m Annotating the results e.g. with gene symbols, GO terms
m Visualizing the results, e.g. Volcano plots
m Gene set analysis etc...

Available tools
bioMart (R), DAVID, GOrilla, REVIGO, ClustVis...

)
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RNA-Seq reads
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What about de-novo assembly of transcriptomes? Building a reference transcriptome

Building a reference transcriptome
m alternative strategy when well-assembled reference genome from a relatively
recently diverged organism is not available

m primary goal: assembling a transcriptome de novo to reconstruct a set of
contigous sequences (contigs) presumed to reflect accurately a large portion of
the RNAs actually transcribed in the cells

not a trivial task, because

m a limited amount of information about the original gene transcripts is retained in the short
reads produced by a sequencer

m genes show different levels of gene expression (uneven coverage)
m more sequencing depth is needed to represent less abundant genes and rare events

m reads from the same transcript must be placed together in the face of variants introduced
by polymorphism and sequencing errors

m and the process must assemble reads from different but often similar, paralogous
transcripts as separate contigs
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What about de-novo assembly of transcriptomes? Building a reference transcriptome

Solutions to sequence assembly arose from the field of mathematics
known as graph theory. These approaches were designed with genome
assembly in mind but have been adapted for transcriptome assembly as
necessary. Most of them are based on de Brujin graphs.

Available tools

m Velvet/Oases: Velvet constructs de Bruijn graphs, simplifies the graphs, and
corrects the graphs for errors and repeats. Oases post-processes Velvet
assemblies with different k-mer sizes

m Trans-ABySS: much like the Velvet/Oases model, Trans-ABySS (Robertson et al.
2010) takes multiple ABySS assemblies (Simpson et al. 2009) produced from a
range of k-mer sizes to optimize transcriptome assemblies in the face of varying
coverage across transcripts

m Trinity: "Inchworm" builds initial contigs by finding paths through k-mer graphs.
"Chrysalis" groups these contigs together and builds de Bruijn graphs for these
groups, in which the overlaps are nodes and the k-mers connecting edges.
"Butterfly" simplifies the graphs when possible, then reconciles the graphs with
original reads to output individual contigs representative of unique splice variants
and paralogous transcripts
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What about de-novo assembly of transcriptomes?

2 Generate all substrngs of lengh k from the reads

o Reads

b Generate the De Brijn graph
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Nature Reviews | Genetics
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Building a reference transcriptome

a) all substrings of length k (k-mers) are
generated from each read

b) each unique k-mer is used to
represent a node in the De Bruijn
graph,pairs of nodes are connected if
shifting a k-mer by one character
creates an exact k???1 overlap
between the two k-mers.

The example (5-mers) illustrates a SNP
or sequencing error and an example of
an intron or a deletion.

Single-nucleotide differences cause
’bubbles’ of length k in the De Brujin
graph, whereas introns or deletions

introduce a shorter path in the graph

c,d) chains of adjacent nodes in the
graph are collapsed into a single node
when the first node has an out degree of
one and the second node has an in
degree of one

e) the isoforms are then assembled.
See more http://rdcu.be/zSpz
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NCBI-supported BLAST

What about de-novo assembly of transcriptomes? Annotations of transcripts

If a reference genome is available, annotation is relatively straightforward:
genomic coordinates from the reference genome are normally associated
with various forms of annotation information through databases. A
transcriptome assembled de novo, on the other hand, is often annotated
from scratch

"match" query sequences to one or more databases of curated, annotated
sequences, using an efficient local sequence alignment approach.

it may be adequate to blast against a database of known or predicted transcripts
from the reference genome of a closely-related organism

it may be desirable to blast contigs against all nucleotide sequences in an
inclusive database

if the annotation emphasis is on protein-coding transcripts, BLASTx, which
translates each query sequence (in all six reading frames) to amino acid
sequences and uses these to query a protein database, may be an appropriate
tool
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And what about scRNA-seq?

Single Cell RNA Sequencing Workflow

RT& Second-strand

Synthe5|s
m - @ S - A
: >}

Solid Tissue Dissociation Single Cell Isolation RNA cDNA
IvT / OR
oo ®
oo ‘ Ampified % |
RNA :.3
Cell Types !
Identification
RT PCR
Clustering
i 7
Single-cell Sequencing Sequencing lerary Amplified cDNA

Expression Profiles

m scRNA-seq are affected by higher noise (amplification biases, dropout event,
3’bias, partical coverage, uneven depth, stochatic nature of transcription,
multimodality in gene expression)

m read processing steps to generate count matrix are largely the same as for bulk
RNA-seq, but the spike-in normalization is a must
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Leading logFC dim2

And what about scRNA-seq?

7S VS

10+

o 0
Leading logFC dim 1

Olga (NBIS)

Common steps

Common steps

® 5190
A 591

RNA-seq

m Quality control on the cells
m Classification of the cell-cycle

phase

m Normalization of cell-specific biases
m Checking for important technical

factors

Modelling and removing technical
noise

Data exploration with
dimensionality reduction

Clustering cells into putative
subpopulations

Detecting marker genes between
subpopulations

see more: Bioconductor
simpleSingleCell workflow
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Exercises Main exercise

Main exercise

m checking the quality of the raw reads with FastQC

m mapping the reads to the reference genome using STAR

m converting between SAM and BAM files format using Samtools

m assessing the post-alignment reads quality using QualiMap

m counting reads overlapping with genes regions using
featureCounts

m building statistical model to find DE genes using edgeR called
from a prepared R script

Olga (NBIS) RNA-seq November 2017 47/ 49



Exercises Bonus exercises

Bonus exercises
m functional annotation, putting DE genes in the biological context
B exon usage, studying the alternative splicing
m data visualisation and graphics
m de novo transcriptome assembly
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Exercises Bonus exercises

Thank you for attention
Questions?

Enjoy the rest of the course

Read more
m RNA-seqglopedia
m RNA-Seq blog

m Conesa et al. Genome Biology, 2016, A survey of best practices
for RNA-seq data analysis
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