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Why sequence transcriptome? Overview

An RNA sequence mirrors the sequence of the DNA from
which it was transcribed.

Consequently, by analyzing transcriptome we can determine
when and where each gene is turned on or off in the cells and
tissues of an organism.
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Why sequence transcriptome? Overview

What can a transcriptome tell us about?
gene sequences in genomes
gene functions
gene activity / gene expression
isoforms and allelic expression
fusion transcripts and novel transcripts
SNPs in genes
co-expression of genes
cell-to-cell heterogeneity (scRNA-seq)
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Why sequence transcriptome? Overview

Transcriptomes are:

dynamic, that is not the same over tissues and time points

directly derived from functional genomics elements, that is
mostly protein-coding genes, providing a useful functionally
relevant subset of the genome, translating into smaller
sequence space
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Why sequence transcriptome? Overview

Overview
Experimental design (biology, medicine, statistics)
RNA extraction (biology, biotechnology)
Library preparation (biology, biotechnology)
High throughput sequencing (engineering, biology, chemistry,
biotechnology, bioinformatics)
Data processing (bioinformatics)
Data analysis (bioinformatics & biostatistics)
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From RNA to sequence

From RNA to sequence
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From RNA to sequence Workflow
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From RNA to sequence Workflow
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From RNA to sequence .fastq
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From RNA to sequence .fastq

.fastq
@MISEQ:233:000000000-AGJP2:1:1101:15260:1358
CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT
+
BBBBBFFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

Line1:

begins with a ’@’ character and is followed by a sequence
identifier and an optional description
Line2: is the raw sequence letters
Line3: begins with a ’+’ character and is optionally followed by the
same sequence identifier (and any description) again
Line4: encodes the quality values for the sequence in Line 2, and
must contain the same number of symbols as letters in the
sequence

Olga (NBIS) RNA-seq November 2017 13 / 49



From RNA to sequence .fastq

.fastq
@MISEQ:233:000000000-AGJP2:1:1101:15260:1358
CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT
+
BBBBBFFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

Line1: begins with a ’@’ character and is followed by a sequence
identifier and an optional description
Line2:

is the raw sequence letters
Line3: begins with a ’+’ character and is optionally followed by the
same sequence identifier (and any description) again
Line4: encodes the quality values for the sequence in Line 2, and
must contain the same number of symbols as letters in the
sequence

Olga (NBIS) RNA-seq November 2017 13 / 49



From RNA to sequence .fastq

.fastq
@MISEQ:233:000000000-AGJP2:1:1101:15260:1358
CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT
+
BBBBBFFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

Line1: begins with a ’@’ character and is followed by a sequence
identifier and an optional description
Line2: is the raw sequence letters
Line3:

begins with a ’+’ character and is optionally followed by the
same sequence identifier (and any description) again
Line4: encodes the quality values for the sequence in Line 2, and
must contain the same number of symbols as letters in the
sequence

Olga (NBIS) RNA-seq November 2017 13 / 49



From RNA to sequence .fastq

.fastq
@MISEQ:233:000000000-AGJP2:1:1101:15260:1358
CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT
+
BBBBBFFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

Line1: begins with a ’@’ character and is followed by a sequence
identifier and an optional description
Line2: is the raw sequence letters
Line3: begins with a ’+’ character and is optionally followed by the
same sequence identifier (and any description) again
Line4:

encodes the quality values for the sequence in Line 2, and
must contain the same number of symbols as letters in the
sequence

Olga (NBIS) RNA-seq November 2017 13 / 49



From RNA to sequence .fastq

.fastq
@MISEQ:233:000000000-AGJP2:1:1101:15260:1358
CTGTAAATTGCCTGACTTGCTAATTGTGATTAACTTAGTTT
+
BBBBBFFFFFFFGGGGGGGGGGHFFFHGHHGFFHHHHHAG

Line1: begins with a ’@’ character and is followed by a sequence
identifier and an optional description
Line2: is the raw sequence letters
Line3: begins with a ’+’ character and is optionally followed by the
same sequence identifier (and any description) again
Line4: encodes the quality values for the sequence in Line 2, and
must contain the same number of symbols as letters in the
sequence

Olga (NBIS) RNA-seq November 2017 13 / 49



From RNA to sequence Quality score

Phred Quality Score
Q = -10 x log P
where:

P, probability of base calling
being incorrect
High Q = high probability of
the base being correct

A Phred quality score of 10 to a base means that the base is
called incorrectly in 1 out of...

10 times.
A Phred quality score of 20 to a base, means that the base is
called incorrectly in 1 out of...100 times.
A Phred quality score of 30 to a base, means that the base is
called incorrectly in 1 out of...1000 times etc...
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From RNA to sequence SE/PE

PE, paired-end
Two .fastq files are created per sequenced library
The order of reads in files is identical and naming of reads is the
same with the exception of the end information
The way of naming reads are changing over time so the read
names depend on software version

@61DFRAAXX100204:1:100:10494:3070/1
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT
+
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCA

@61DFRAAXX100204:1:100:10494:3070/2
ATCCAAGTTAAAACAGAGGCCTGTGACAGACTCTTGGCCCATCGTGTTGATA
+
_^_a^cccegcgghhgZc`ghhc^egggd^_[d]defcdfd^Z^OXWaQ^ad
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From RNA to sequence Strandness

SE

F: the single read is in the sense (F,
forward) orientation

R: the single read is in the
antisense (R, reverse) orientation

PE

RF: first read (/1) is sequenced as
anti-sense (R) & second read (/2) is
in the sense strand (F)

FR: first read (/1) is sequenced as
sense (F) & second read (/2) is in
the antisense strand (R)
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Reference based data analysis pipeline

Reference based data analysis pipeline
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Reference based data analysis pipeline Overview
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Reference based data analysis pipeline Overview

Main steps
Initial processing incl. QC
Aligning reads to reference genome
Counting reads
Differential gene expression
Further analysis

Olga (NBIS) RNA-seq November 2017 19 / 49



Reference based data analysis pipeline Initial processing

Initial processing incl. QC

Demultiplex by index or
barcode

Remove adapter
sequences

Trim reads by quality

Discard reads by
quality/ambiguity

Available tools

FastQC, PRINSEQ, TRIMMOMATIC, TrimGalore, FastX, Cutadapt
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Reference based data analysis pipeline Initial processing

Initial processing incl. QC

filtering reads for quality score, e.g. with avg. quality below 20 defined within
4-base wide sliding window

filtering reads for read length, e.g. reads shorter than 36 bases

removing artificial sequences, e.g. adapters
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Reference based data analysis pipeline Aligning reads

Aligning reads
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Reference based data analysis pipeline Aligning reads
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Reference based data analysis pipeline Aligning reads

Aligning reads: mappers

important to use mappers allowing for a read to be "split" between distant
regions of the reference in the event that the read spans two exons

lots of different aligners exists based on various algorithms e.g. brute force
comparison, Burrows-Wheeler Transform, Smith-Waterman, Suffix tree

usually there is a trade-off between speed versus accuracy and sensitivity

usually the "biggest difference" is with default settings, most mappers will allow
to optimize settings

performance vary by genome complexity

A good read: Barruzo et. al. Nature Methods 14, (2017)
https://www.nature.com/articles/nmeth.4106

Available tools

STAR, HISAT, MapSlice2, Subread, TopHat
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Reference based data analysis pipeline Aligning reads

Aligning reads: reference files

.fasta (download reference genome FASTA file)

.gtf (download the corresponding genome annotation in GTF or GFF)

Source
ENSEMBL, NCBI
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Reference based data analysis pipeline Aligning reads

Aligning reads: QC

Post mapping QC, e.g. reads should mostly map to known genes,
most splice event should be known and canonical (GU-AG)
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Reference based data analysis pipeline Counting

Counting reads

Available tools
HTSeq, featureCounts, R

Olga (NBIS) RNA-seq November 2017 27 / 49



Reference based data analysis pipeline Counting

Counting reads

from: http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

Olga (NBIS) RNA-seq November 2017 28 / 49



Reference based data analysis pipeline Counting

Counting reads
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Reference based data analysis pipeline Counting

Normalizing counts

Gene counts depend e.g. on sequencing depth of a sample
and on the sequence length of the gene/transcript. Raw read
counts cannot be used to compare gene expression across
libraries.

Normalization methods
CPM, counts per million, accounts for sequencing depth
RPKM/FPKM, Reads/Fragments Per Kilobase Per Milion accounts
for sequencing depth and transcript length
TMM, Trimmed Mean of M-values, accounts for sequencing depth
and transcript length and composition of the RNA population
and few other using scaling factors methods...
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Reference based data analysis pipeline Differential expression

Differential gene expression

Outcomei = (Modeli) + errori

we collect data on a sample from a much larger population. Statistics lets us to
make inferences about the population from which it was derived

we try to predict the outcome given a model fitted to the data
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Reference based data analysis pipeline Differential expression

Differential gene expression
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in RNA-seq case:

we take the normalized read counts

and we perform statistical analysis
to discover quantitative changes in
expression levels between
experimental groups

e.g. to decide whether, for a given
gene, an observed difference in
read counts is significant, that is,
whether it is greater than what
would be expected just due to
natural random variation.
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Reference based data analysis pipeline Differential expression

Differential expression

Usually, reads counts do not follow normal distribution & we
work with low number of biological replicates

DE methods
Discrete distribution models, e.g. edgeR, DESeq2
Continuous discrete models, e.g. t-test
Non-parametric model, e.g. SAMseq
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Reference based data analysis pipeline Differential expression

Differential expression

The likelihood of observing a significant p-value increases as we do more
tests, i.e. testing more than one gene. Modern FDR adjustment techniques
take into account of background expectation of a uniformly distributed
p-values and adjust their values accordingly to how significantly different
things are, so the p-values from multiple testing can be interpreted more
accurately.
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Reference based data analysis pipeline Differential expression

Differential expression
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Available tools
edgeR, DEXSeq
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Reference based data analysis pipeline Further analysis

Further analysis

Annotating the results e.g. with gene symbols, GO terms
Visualizing the results, e.g. Volcano plots
Gene set analysis etc...

Available tools
bioMart (R), DAVID, GOrilla, REVIGO, ClustVis...
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What about de-novo assembly of transcriptomes?

What about de-novo assembly of transcriptomes?
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What about de-novo assembly of transcriptomes? Overview
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What about de-novo assembly of transcriptomes? Building a reference transcriptome

Building a reference transcriptome
alternative strategy when well-assembled reference genome from a relatively
recently diverged organism is not available

primary goal: assembling a transcriptome de novo to reconstruct a set of
contigous sequences (contigs) presumed to reflect accurately a large portion of
the RNAs actually transcribed in the cells

not a trivial task, because
a limited amount of information about the original gene transcripts is retained in the short
reads produced by a sequencer

genes show different levels of gene expression (uneven coverage)

more sequencing depth is needed to represent less abundant genes and rare events

reads from the same transcript must be placed together in the face of variants introduced
by polymorphism and sequencing errors

and the process must assemble reads from different but often similar, paralogous
transcripts as separate contigs
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What about de-novo assembly of transcriptomes? Building a reference transcriptome

Solutions to sequence assembly arose from the field of mathematics
known as graph theory. These approaches were designed with genome
assembly in mind but have been adapted for transcriptome assembly as
necessary. Most of them are based on de Brujin graphs.

Available tools
Velvet/Oases: Velvet constructs de Bruijn graphs, simplifies the graphs, and
corrects the graphs for errors and repeats. Oases post-processes Velvet
assemblies with different k-mer sizes

Trans-ABySS: much like the Velvet/Oases model, Trans-ABySS (Robertson et al.
2010) takes multiple ABySS assemblies (Simpson et al. 2009) produced from a
range of k-mer sizes to optimize transcriptome assemblies in the face of varying
coverage across transcripts

Trinity: "Inchworm" builds initial contigs by finding paths through k-mer graphs.
"Chrysalis" groups these contigs together and builds de Bruijn graphs for these
groups, in which the overlaps are nodes and the k-mers connecting edges.
"Butterfly" simplifies the graphs when possible, then reconciles the graphs with
original reads to output individual contigs representative of unique splice variants
and paralogous transcripts
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What about de-novo assembly of transcriptomes? Building a reference transcriptome

a) all substrings of length k (k-mers) are
generated from each read

b) each unique k-mer is used to
represent a node in the De Bruijn
graph,pairs of nodes are connected if
shifting a k-mer by one character
creates an exact k???1 overlap
between the two k-mers.

The example (5-mers) illustrates a SNP
or sequencing error and an example of
an intron or a deletion.

Single-nucleotide differences cause
’bubbles’ of length k in the De Brujin
graph, whereas introns or deletions
introduce a shorter path in the graph

c,d) chains of adjacent nodes in the
graph are collapsed into a single node
when the first node has an out degree of
one and the second node has an in
degree of one

e) the isoforms are then assembled.
See more http://rdcu.be/zSpz
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What about de-novo assembly of transcriptomes? Annotations of transcripts

If a reference genome is available, annotation is relatively straightforward:
genomic coordinates from the reference genome are normally associated
with various forms of annotation information through databases. A
transcriptome assembled de novo, on the other hand, is often annotated
from scratch

NCBI-supported BLAST
"match" query sequences to one or more databases of curated, annotated
sequences, using an efficient local sequence alignment approach.

it may be adequate to blast against a database of known or predicted transcripts
from the reference genome of a closely-related organism

it may be desirable to blast contigs against all nucleotide sequences in an
inclusive database

if the annotation emphasis is on protein-coding transcripts, BLASTx, which
translates each query sequence (in all six reading frames) to amino acid
sequences and uses these to query a protein database, may be an appropriate
tool
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And what about scRNA-seq?
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And what about scRNA-seq?

scRNA-seq are affected by higher noise (amplification biases, dropout event,
3’bias, partical coverage, uneven depth, stochatic nature of transcription,
multimodality in gene expression)
read processing steps to generate count matrix are largely the same as for bulk
RNA-seq, but the spike-in normalization is a must
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And what about scRNA-seq? Common steps

Common steps
Quality control on the cells

Classification of the cell-cycle
phase

Normalization of cell-specific biases

Checking for important technical
factors

Modelling and removing technical
noise

Data exploration with
dimensionality reduction

Clustering cells into putative
subpopulations

Detecting marker genes between
subpopulations

see more: Bioconductor
simpleSingleCell workflow
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Exercises

Exercises

Olga (NBIS) RNA-seq November 2017 46 / 49



Exercises Main exercise

Main exercise
checking the quality of the raw reads with FastQC
mapping the reads to the reference genome using STAR
converting between SAM and BAM files format using Samtools
assessing the post-alignment reads quality using QualiMap
counting reads overlapping with genes regions using
featureCounts
building statistical model to find DE genes using edgeR called
from a prepared R script
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Exercises Bonus exercises

Bonus exercises
functional annotation, putting DE genes in the biological context
exon usage, studying the alternative splicing
data visualisation and graphics
de novo transcriptome assembly
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Exercises Bonus exercises

Thank you for attention
Questions?

Enjoy the rest of the course

Read more
RNA-seqlopedia
RNA-Seq blog
Conesa et al. Genome Biology, 2016, A survey of best practices
for RNA-seq data analysis
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