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RNA-seq has become a powerful approach to study the continually changing cellular

transcriptome. Here, one of the most common questions is to identify genes that are differentially

expressed between two conditions, e.g. controls and treatment. The main exercise in this tutorial

will take you through a basic bioinformatic analysis pipeline to answer just that, it will show you

how to �nd differentially expressed (DE) genes.

Main exercise

01 Check the quality of the raw reads with FastQC

02 Map the reads to the reference genome using Star

03 Assess the post-alignment quality using QualiMap

04 Count the reads overlapping with genes using featureCounts

05 Find DE genes using edgeR in R

RNA-seq experiment does not necessarily end with a list of DE genes. If you have time after

completing the main exercise, try one (or more) of the bonus exercises. The bonus exercises can be

run independently of each other, so choose the one that matches your interest. Bonus sections are

listed below.

Bonus exercises

01 Functional annotation of DE genes using GO/Reactome/Kegg databases

02 Visualisation of RNA-seq BAM �les using IGV genome browser

03 RNA-Seq �gures and plots using R

04 De-novo transcriptome assembly using Trinity

Expected run times (in minutes, when running all samples) for some of the steps as

shown below when using 8 cores with 64 GB RAM.

Step Time_Min

FastQC 11:00

1 Data description



Step Time_Min

STAR Mapping 32:00

QualiMap 42:00

MultiQC 08:00

FeatureCounts 03:00

Trinity 47:00

It is not recommended to run every step on all samples are it is not possible to

complete in the available time. Pre-computed �les for all steps are made available.

Instructions to copy them are shown at the end of each section.

You are welcome to try your own solutions to the problems, before checking the

solution. Click the +  button to see the suggested solution. There is more than one

way to complete a task. Discuss with person next to you and ask us when in doubt.

Markers:    Tip    Discuss    Task

 

1 Data description
The data used in this exercise is from the paper: Poitelon, Yannick, et alet al. “YAP and TAZ control

peripheral myelination and the expression of laminin receptors in Schwann cells.” Nature

neuroscience 19.7 (2016): 879 (https://www.nature.com/articles/nn.4316). In this study, YAP

and TAZ genes were knocked-down in Schwann cells to study myelination, using the sciatic nerve

in mice as a model.

Myelination is essential for nervous system function. Schwann cells interact with neurons and the

basal lamina to myelinate axons using receptors, signals and transcription factors. Hippo pathway

is a conserved pathway involved in cell contact inhibition, and it acts to promote cell proliferation

and inhibits apoptosis. The pathway integrates mechanical signals (cell polarity,

mechanotransduction, membrane tension) and gene expression response. In addition to its role in

organ size control, the Hippo pathway has been implicated in tumorigenesis, for example its

deregulation occurs in a broad range of human carcinomas. Transcription co-activators YAP and

TAZ are two major downstream effectors of the Hippo pathway, and have redundant roles in

transcriptional activation.

The material for RNA-seq was collected from 2 conditions (Wt and KO), each with 3 biological

replicates.

Accession Condition Replicate

SRR3222409 KO 1

SRR3222410 KO 2

https://www.nature.com/articles/nn.4316


Accession Condition Replicate

SRR3222411 KO 3

SRR3222412 Wt 1

SRR3222413 Wt 2

SRR3222414 Wt 3

For the purpose of this tutorial, to shorten the time needed to run various

bioinformatics steps, we have downsampled the original �les. We randomly

sampled, without replacement, 25% reads from each sample, using fastq-sample

from the toolset fastq-tools (https://homes.cs.washington.edu/~dcjones/fastq-

tools/).

 

2 Main exercise
The main exercise covers Differential Gene Expression (DGE) work�ow from raw reads to a list of

differentially expressed genes.

2.1 Preparation
 For Linux and Mac users, Log in to Uppmax in a way so that the generated graphics are exported

via the network to your screen. Login in to Uppmax with X-forwarding enabled. This will allow any

graphical interface that you start on your compute node to be exported to your computer.

Linux users are recommended to use this:

ssh -X username@rackham.uppmax.uu.se

And Mac user are recommended to use this:

ssh -Y username@rackham.uppmax.uu.se

Windows users on MobaXterm do not need to worry about this option.

2.1.1 Book a node

For the RNA-Seq part of the course (Thu/Fri), we will work on the Snowy cluster. A standard

compute node on cluster Snowy has 128 GB of RAM and 16 cores. Therefore, each core gives you

8 GB of RAM. We will use 8 cores per person for this session which gives you about 64 GB RAM.

The code below is valid to run at the start of the day. If you are running it in the middle of a day, you

need to decrease the time ( -t ). Do not run this twice and also make sure you are not running

computations on a login node.

To run jobs on the snowy cluster therefore, we need to add -M snowy .

Book resources for RNA-Seq day 1.

https://homes.cs.washington.edu/~dcjones/fastq-tools/


salloc -A snic2019-8-3 -t 08:00:00 -p core -n 8 --reservation=snic2019-8-3_7  
-M snowy

Book resources for RNA-Seq day 2.

salloc -A snic2019-8-3 -t 08:00:00 -p core -n 8 --reservation=snic2019-8-3_8  
-M snowy

2.1.2 Set-up directory

Setting up the directory structure is an important step as it helps to keep our raw data,

intermediate data and results in an organised manner. All work must be carried out at this location

/proj/snic2019-8-3/nobackup/[user]/  where [user]  is your user name. All RNA-Seq

related activities must be carried out in a sub-directory named rnaseq .

 Set up the below directory structure in your project directory.

[user]/ 
rnaseq/ 
  +-- 1_raw/ 
  +-- 2_fastqc/ 
  +-- 3_mapping/ 
  +-- 4_qualimap/ 
  +-- 5_dge/ 
  +-- 6_multiqc/ 
  +-- reference/ 
  |   +-- mouse/ 
  |   +-- mouse_chr11/ 
  +-- scripts/

+

The 1_raw  directory will hold the raw fastq �les (soft-links). 2_fastqc  will hold FastQC outputs.

3_mapping  will hold the STAR mapping output �les. 4_qualimap  will hold the QualiMap output

�les. 5_dge  will hold the counts from featureCounts and all differential gene expression related

�les. 6_multiqc  will hold MultiQC outputs. reference  directory will hold the reference

genome, annotations and STAR indices.

 It might be a good idea to open an additional terminal window. One to navigate

through directories and another for scripting in the scripts  directory.

2.1.3 Create symbolic links

We have the raw fastq �les in this remote directory:

/sw/share/compstore/courses/ngsintro/rnaseq/main/1_raw/ . We are going to create

symbolic links (soft-links) for these �les from our 1_raw  directory to the remote directory. We do

this because they are large �les and simply copying them would use up a lot of storage space. Soft-

linking �les and folders allows us to work with those �les as if they were actually there. Use pwd

to check if you are standing in the correct directory. You should be standing here:



/proj/snic2019-8-3/nobackup/[user]/rnaseq/1_raw

Run below to create softlinks.

ln -s /sw/share/compstore/courses/ngsintro/rnaseq/main/1_raw/*.fastq.gz .

Check if your �les have linked correctly. You should be able to see as below.

[user@rackham2 1_raw]$ ls -l 
SRR3222409_1.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222409_1.fastq.gz 
SRR3222409_2.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222409_2.fastq.gz 
SRR3222410_1.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222410_1.fastq.gz 
SRR3222410_2.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222410_2.fastq.gz 
SRR3222411_1.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222411_1.fastq.gz 
SRR3222411_2.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222411_2.fastq.gz 
SRR3222412_1.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222412_1.fastq.gz 
SRR3222412_2.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222412_2.fastq.gz 
SRR3222413_1.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222413_1.fastq.gz 
SRR3222413_2.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222413_2.fastq.gz 
SRR3222414_1.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222414_1.fastq.gz 
SRR3222414_2.fastq.gz -> /sw/share/compstore/courses/ngsintro/rnaseq/main/1_ra
w/SRR3222414_2.fastq.gz

 

2.2 FastQC: Quality check
After receiving raw reads from a high throughput sequencing centre it is essential to check their

quality. FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) provides a simple

way to do some quality control check on raw sequence data. It provides a modular set of analyses

which you can use to get a quick impression of whether your data has any problems of which you

should be aware before doing any further analysis.

 Change into the 2_fastqc  directory. Use pwd  to check if you are standing in the correct

directory. You should be standing here:

/proj/snic2019-8-3/nobackup/[user]/rnaseq/2_fastqc

Load Uppmax modules bioinfo-tools  and FastQC FastQC/0.11.5 .

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


module load bioinfo-tools 
module load FastQC/0.11.5

Once the module is loaded, FastQC program is available through the command fastqc . Use

fastqc --help  to see the various parameters available to the program. We will use -t 8 , to

specify number of threads, -o  to specify the output directory path and �nally, the name of the

input fastq �le to analyse. The syntax will look like below.

fastqc -t 8 -o . ../1_raw/filename.fastq.gz

Based on the above command, we will write a bash loop to process all fastq �les in the directory.

Writing multi-line commands through the terminal can be a pain. Therefore, we will run larger

scripts from a bash script �le. Move to your scripts  directory and create a new �le named

fastqc.sh .

You should be standing here to run this:

/proj/snic2019-8-3/nobackup/[user]/rnaseq/scripts

+

Use nano , vim  or gedit  to edit fastqc.sh .

+

While standing in the 2_fastqc  directory, run the �le fastqc.sh . Use pwd  to check if you are

standing in the correct directory.

You should be standing here to run this:

/proj/snic2019-8-3/nobackup/[user]/rnaseq/2_fastqc

+

After the fastqc run, there should be a .zip  �le and a .html  �le for every fastq �le. The .html

�le is the report that you need. Open the .html  in the browser and view it. You only need to do

this for one �le now. We will do a comparison with all samples when using the MultiQC tool.

firefox file.html &

 Adding &  at the end sends that process to the background, so that the console is free to accept

new commands.

Optional

Download the .html  �le to your computer and view it.

 All users can use an SFTP browser like Filezilla (https://�lezilla-project.org/) or Cyberduck

(https://cyberduck.io/) for a GUI interface. Windows users can also use the MobaXterm SFTP

�le browser to drag and drop. Linux and Mac users can use SFTP or SCP by running the below

command in a LOCAL terminal and NOT on Uppmax.

https://filezilla-project.org/
https://cyberduck.io/


scp user@rackham.uppmax.uu.se:/proj/snic2019-8-3/nobackup/[user]/2_fastqc/S
RR3222409_1_fastqc.html ./

 Go back to the FastQC website and compare your report with the sample report for Good

Illumina data

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html)

and Bad Illumina data

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html).

 Discuss based on your reports, whether your data is of good enough quality and/or what steps

are needed to �x it.

 

2.3 STAR: Mapping
After verifying that the quality of the raw sequencing reads is acceptable, we will map the reads to

the reference genome. There are many mappers/aligners available, so it may be good to choose

one that is adequate for your type of data. Here, we will use a software called STAR (Spliced

Transcripts Alignment to a Reference) as it is good for generic purposes, fast, easy to use and has

been shown to outperform many of the other tools when aligning 2x76bp paired-end data. Before

we begin mapping, we need to obtain genome reference sequence ( .fasta  �le) and a

corresponding annotation �le ( .gtf ) and build a STAR index. Due to time constraints, we will

practice index building only on chromosome 11. But, then we will use the pre-prepared full-

genome index to run the actual mapping.

2.3.1 Get reference

It is best if the reference genome ( .fasta ) and annotation ( .gtf ) �les come from the same

source to avoid potential naming conventions problems. It is also good to check in the manual of

the aligner you use for hints on what type of �les are needed to do the mapping.

 What is the idea behind building STAR index? What �les are needed to build one? Where do we

take them from? Could one use a STAR index that was generated before? Browse through Ensembl

(https://www.ensembl.org/index.html) and try to �nd the �les needed. Note that we are working

with Mouse (Mus musculus).

 Move into the reference  directory and download the Chr 11 genome ( .fasta ) �le and the

genome-wide annotation �le ( .gtf ) from Ensembl.

You should be standing here to run this:

/proj/snic2019-8-3/nobackup/[user]/rnaseq/reference

+

Decompress the �les for use.

+

You should now have the �les as below.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html
https://www.ensembl.org/index.html


[user@rackham2 reference]$ ll 
drwxrwsr-x 2 user g201XXXX 4.0K Sep  4 19:33 mouse 
drwxrwsr-x 2 user g201XXXX 4.0K Sep  4 19:32 mouse_chr11 
-rw-rw-r-- 1 user g201XXXX 742M Sep  4 19:31 Mus_musculus.GRCm38.93.gtf 
-rw-rw-r-- 1 user g201XXXX 119M Sep  4 19:31 Mus_musculus.GRCm38.dna.chromosom
e.11.fa

2.3.2 Build index

Move into the reference  directory if not already there. Load module STAR version 2.5.2b.

Remember to load bioinfo-tools  if you haven’t done so already.

module load bioinfo-tools 
module load star/2.5.2b

 To search for other available versions of STAR, use module spider star .

Create a new bash script in your scripts  directory named star_index.sh  and add the

following lines:

#!/bin/bash 
 
# load module 
module load bioinfo-tools 
module load star/2.5.2b 
 
star \ 
--runMode genomeGenerate \ 
--runThreadN 8 \ 
--genomeDir ./mouse_chr11 \ 
--genomeFastaFiles ./Mus_musculus.GRCm38.dna.chromosome.11.fa \ 
--sjdbGTFfile ./Mus_musculus.GRCm38.93.gtf

The above script means that STAR should run in genomeGenerate  mode to build an index. It

should use 8 threads for computation. The output �les must be directed to the indicated directory.

The paths to the .fasta  �le and the annotation �le ( .gtf ) is also shown.

Run the script from the reference  directory. Use pwd  to check if you are standing in the correct

directory.

bash ../scripts/star_index.sh

Once the indexing is complete, move into the mouse_chr11  directory and make sure you have all

the �les.



[user@rackham2 mouse_chr11]$ ll 
-rw-rw-r-- 1 user g201XXXX   10 Sep  4 19:31 chrLength.txt 
-rw-rw-r-- 1 user g201XXXX   13 Sep  4 19:31 chrNameLength.txt 
-rw-rw-r-- 1 user g201XXXX    3 Sep  4 19:31 chrName.txt 
-rw-rw-r-- 1 user g201XXXX   12 Sep  4 19:31 chrStart.txt 
-rw-rw-r-- 1 user g201XXXX 1.7M Sep  4 19:33 exonGeTrInfo.tab 
-rw-rw-r-- 1 user g201XXXX 805K Sep  4 19:33 exonInfo.tab 
-rw-rw-r-- 1 user g201XXXX  56K Sep  4 19:33 geneInfo.tab 
-rw-rw-r-- 1 user g201XXXX 121M Sep  4 19:33 Genome 
-rw-rw-r-- 1 user g201XXXX  553 Sep  4 19:31 genomeParameters.txt 
-rw-rw-r-- 1 user g201XXXX 967M Sep  4 19:33 SA 
-rw-rw-r-- 1 user g201XXXX 1.5G Sep  4 19:33 SAindex 
-rw-rw-r-- 1 user g201XXXX 522K Sep  4 19:33 sjdbInfo.txt 
-rw-rw-r-- 1 user g201XXXX 463K Sep  4 19:33 sjdbList.fromGTF.out.tab 
-rw-rw-r-- 1 user g201XXXX 463K Sep  4 19:33 sjdbList.out.tab 
-rw-rw-r-- 1 user g201XXXX 480K Sep  4 19:33 transcriptInfo.tab

This index for chr11 was created just to familiarise with the steps. We will use the index built on

the whole genome for downstream exercises. The index for the whole genome was prepared for us

before class in the very same way as for the chromosome 11 in steps above. It just requires more

time (ca. 4h) to run. The index is found here:

/sw/share/compstore/courses/ngsintro/rnaseq/reference/mouse/ .

Soft-link all the �les inside

/sw/share/compstore/courses/ngsintro/rnaseq/reference/mouse/  to the directory named

mouse  which is inside your rnaseq/reference/ .

You should be standing here to run this:

/proj/snic2019-8-3/nobackup/[user]/rnaseq/reference

+

2.3.3 Map reads

Now that we have the index ready, we are ready to map reads. Move to the directory 3_mapping .

Use pwd  to check if you are standing in the correct directory.

You should be standing here to run this:

/proj/snic2019-8-3/nobackup/[user]/rnaseq/3_mapping

We will create softlinks to the fastq �les from here to make things easier.

+

These are the parameters that we want to specify for the STAR mapping run:

Run mode is now alignReads

Specify the full genome index path

Specify the number of threads

We must indicate the input is gzipped and must be uncompressed



Indicate read1 and read2 since we have paired-end reads

Specify the annotation (.gtf) �le

Specify an output �le name

Specify that the output must be BAM and the reads must be sorted by coordinate

Our mapping script will look like this:

+

But, we will generalise the above script to be used as a bash script to read any two input �les and

to automatically create the output �lename.

 Now create a new bash script �le named star_align.sh  in your scripts  directory and add

the script below to it.

+

In the above script, the two input fastq �les as passed in as parameters $1  and $2 . The output

�lename is automatically created using this line prefix='${1/_*/}'  from input �lename of $1 .

For example, a �le named sample_1.fastq.gz  will have the _1.fastq.gz  removed and the

pre�x will be just sample . This approach will work only if your �lenames are labelled suitably.

Now we can run the bash script like below while standing in the 3_mapping  directory.

bash ../scripts/star_align.sh sample_1.fastq.gz sample_2.fastq.gz

Now, do the same for the other samples as well if you have time. Otherwise just run for one sample

and results for the other samples can be copied (See end of this section).

Optional

Try to create a new bash loop script ( star_align_batch.sh ) to iterate over all fastq �les in

the directory and run the mapping using the star_align.sh  script. Note that there is a bit of

a tricky issue here. You need to use two fastq �les ( _1  and _2 ) per run rather than one �le.

+

Run the star_align_batch.sh  script in the 3_mapping  directory.

bash ../scripts/star_align_batch.sh

At the end of the mapping jobs, you should have the following list of output �les for every sample:

[user@rackham2 3_mapping]$ ls -l 
-rw-rw-r-- 1 user g201XXXX 628M Sep  6 00:54 SRR3222409Aligned.sortedByCoord.o
ut.bam 
-rw-rw-r-- 1 user g201XXXX 1.9K Sep  6 00:54 SRR3222409Log.final.out 
-rw-rw-r-- 1 user g201XXXX  21K Sep  6 00:54 SRR3222409Log.out 
-rw-rw-r-- 1 user g201XXXX  482 Sep  6 00:54 SRR3222409Log.progress.out 
-rw-rw-r-- 1 user g201XXXX 3.6M Sep  6 00:54 SRR3222409SJ.out.tab 
drwx--S--- 2 user g201XXXX 4.0K Sep  6 00:50 SRR3222409_STARgenome



The .bam  �le contains the alignment of all reads to the reference genome in binary format. BAM

�les are not human readable directly. To view a BAM �le in text format, you can use

samtools view  functionality.

module load samtools/1.6 
samtools view SRR3222409Aligned.sortedByCoord.out.bam | head 
 
SRR3222409.8816556      163     1       3199842 255     101M    =       319985
9 116 TTTTAAAGTTTTACAAGAAAAAAAATCAGATAACCGAGGAAAATTATTCATTATGAAGTACTACTTTCCACT
TCATTTCATCACAAATTGTAACTTACTTA DDBDDIIIHIIHHHIHIHHIIIIIDHHIIIIIIIIIIIIIIHIIIIHI
IIEHHIIIHIIIIGIIIIIIIIIIIIIIHIIHEHIIIIIIHIIIIIHIIIIII        NH:i:1  HI:i:1  A
S:i:198        nM:i:0 
SRR3222409.8816556      83      1       3199859 255     99M     =       319984
2 -116AAAAAAAATCAGATAACCGAGGAAAATTATTCATTATGAAGTACTACTTTCCACTTCATTTCATCACAAATT
GTAACTTACTTAACTGACCAAAAAAAC   IIIIIHHIHHIIIIHHEEHIIIHIIHHHIHIIIIIIIHIHHIIIIIIH
IIIIIIIIHHHHHIIIIIHIHHIIIHIHHFHHIIHIIIIHCIIIIHDDD@D  NH:i:1  HI:i:1  AS:i:198   
nM:i:0 
SRR3222409.2149741      163     1       3199933 255     101M    =       320006
9 237 AACTTACTTAACTGACCAAAAAAACTATGGTACTGCAGTATAGCAAATACTCCACACACTGTGCTTTGAGCT
AGAGCACTTGGAGTCACTGCCCAGGGCAG ABDDDHHIIIIIIIIIIIIIIIHHIIIIIIIIIIIIIIIIIIIIIIII
<<FHIHGHIIIIGIHEHIIIIIGIIIIIIIIIIIIIIHIIIIIHIIIIHIIIH        NH:i:1  HI:i:1  A
S:i:200        nM:i:0

 Can you identify what some of these columns are?

The Log.final.out  �le gives a summary of the mapping run. This �le is used by MultiQC later to

collect mapping statistics.

 Inspect one of the mapping log �les to identify the number of uniquely mapped reads and multi-

mapped reads.

+

The BAM �le names can be simpli�ed by renaming them. This command renames all BAM �les.

rename "Aligned.sortedByCoord.out" "" *.bam

Next, we need to index these BAM �les. Indexing creates .bam.bai  �les which are required by

many downstream programs to quickly and ef�ciently locate reads anywhere in the BAM �le.

 Index all BAM �les.

module load samtools/1.8 
 
for i in *.bam 
  do 
    echo "Indexing $i ..." 
    samtools index $i 
  done

Finally, we should have .bai  index �les for all BAM �les.



[user@rackham2 3_mapping]$ ls -l 
-rw-rw-r-- 1 user g201XXXX 628M Sep  6 00:54 SRR3222409.bam 
-rw-rw-r-- 1 user g201XXXX 1.8M Sep  6 01:22 SRR3222409.bam.bai

 If you are running short of time or unable to run the mapping, you can copy over results for all

samples that have been prepared for you before class. They are available at this location:

/sw/share/compstore/courses/ngsintro/rnaseq/main/3_mapping/ .

cp -r /sw/share/compstore/courses/ngsintro/rnaseq/main/3_mapping/* /proj/snic2
019-8-3/nobackup/[user]/rnaseq/3_mapping/

 

2.4 QualiMap: Post-alignment QC
Some important quality aspects, such as saturation of sequencing depth, read distribution

between different genomic features or coverage uniformity along transcripts, can be measured

only after mapping reads to the reference genome. One of the tools to perform this post-

alignment quality control is QualiMap. QualiMap examines sequencing alignment data in

SAM/BAM �les according to the features of the mapped reads and provides an overall view of the

data that helps to the detect biases in the sequencing and/or mapping of the data and eases

decision-making for further analysis.

 Read through QualiMap (http://qualimap.bioinfo.cipf.es/doc_html/intro.html) documentation

and see if you can �gure it out how to run it to assess post-alignment quality on the RNA-seq

mapped samples. Here is the RNA-Seq speci�c tool explanation

(http://qualimap.bioinfo.cipf.es/doc_html/analysis.html#rnaseqqc). The tool is already installed on

Uppmax as a module.

 Load the QualiMap module version 2.2.1 and create a bash script named qualimap.sh  in your

scripts  directory.

Add the following script to it.

+

The line prefix="${1/.bam/}"  is used to remove .bam  from the input �lename and create a

pre�x which will be used to label output. The export DISPLAY=""  is used to run JAVA application

in headless mode or else throws an error about X11 display. The last part

>& "${prefix}-qualimap.log"  saves the standard-out as a log �le.

 create a new bash loop script named qualimap_batch.sh  with a bash loop to run the qualimap

script over all BAM �les. The loop should look like below. Alternatively, you can also simply run the

script below directly on the command line.

+

Run the loop script qualimap_batch.sh  in the directory 4_qualimap .

bash ../scripts/qualimap_batch.sh

Qualimap should have created a directory for every BAM �le. Inside every directory, you should

see:

http://qualimap.bioinfo.cipf.es/doc_html/intro.html
http://qualimap.bioinfo.cipf.es/doc_html/analysis.html#rnaseqqc


[user@rackham2 4_qualimap]$ ls -l 
drwxrwxr-x 2 user g201XXXX 4.0K Sep 14 17:24 css 
drwxrwxr-x 2 user g201XXXX 4.0K Sep 14 17:24 images_qualimapReport 
-rw-rw-r-- 1 user g201XXXX  11K Sep 14 17:24 qualimapReport.html 
drwxrwxr-x 2 user g201XXXX 4.0K Sep 14 17:24 raw_data_qualimapReport 
-rw-rw-r-- 1 user g201XXXX 1.2K Sep 14 17:24 rnaseq_qc_results.txt

 Inspect the HTML output �le and try to make sense of it.

+

 If you are running out of time or were unable to run QualiMap, you can also copy pre-run

QualiMap output from this location:

/sw/share/compstore/courses/ngsintro/rnaseq/main/4_qualimap/ .

cp -r /sw/share/compstore/courses/ngsintro/rnaseq/main/4_qualimap/* /proj/snic
2019-8-3/nobackup/[user]/rnaseq/4_qualimap/

 Check the QualiMap report for one sample and discuss if the sample is of good quality. You only

need to do this for one �le now. We will do a comparison with all samples when using the MultiQC

tool.

 

2.5 featureCounts: Counting reads
After ensuring mapping quality, we can move on to enumerating reads mapping to genomic

features of interest. Here we will use featureCounts, an ultrafast and accurate read

summarization program, that can count mapped reads for genomic features such as genes, exons,

promoter, gene bodies, genomic bins and chromosomal locations.

 Read featureCounts documentation (http://bioinf.wehi.edu.au/subread-

package/SubreadUsersGuide.pdf) and see if you can �gure it out how to use paired-end reads

using an unstranded library to count fragments overlapping with exonic regions and summarise

over genes.

 Load the subread module version 1.5.2 on Uppmax. Create a bash script named

featurecounts.sh  in the directory scripts .

We could run featureCounts on each BAM �le, produce a text output for each sample and

combine the output. But the easier way is to provide a list of all BAM �les and featureCounts will

combine counts for all samples into one text �le.

Below is the script that we will use:

+

In the above script, we indicate the path of the annotation �le

( -a "../reference/Mus_musculus.GRCm38.93.gtf" ), specify the output �le name

( -o "counts.txt" ), specify that that annotation �le is in GTF format ( -F "GTF" ), specify that

reads are to be counted over exonic features ( -t "exon" ) and summarised to the gene level

( -g "gene_id" ). We also specify that the reads are paired-end ( -p ), the library is unstranded

( -s 0 ) and the number of threads to use ( -T 8 ).

http://bioinf.wehi.edu.au/subread-package/SubreadUsersGuide.pdf


Run the featurecounts bash script in the directory 5_dge . Use pwd  to check if you are standing in

the correct directory.

You should be standing here to run this:

/proj/snic2019-8-3/nobackup/[user]/rnaseq/5_dge

+

You should have two �les:

[user@rackham2 5_dge]$ ls -l 
-rw-rw-r-- 1 user g201XXXX 2.8M Sep 15 11:05 counts.txt 
-rw-rw-r-- 1 user g201XXXX  658 Sep 15 11:05 counts.txt.summary

 Inspect the �les and try to make sense of them.

 

2.6 MultiQC: Combined QC report
We will use the tool MultiQC to crawl through the output, log �les etc from FastQC, STAR,

QualiMap and featureCounts to create a combined QC report.

Run MultiQC as shown below in the 6_multiqc  directory. You should be standing here to run

this:

/proj/snic2019-8-3/nobackup/[user]/rnaseq/6_multiqc

module load bioinfo-tools 
module load MultiQC/1.6 
 
multiqc --interactive ../

You should have two �les:

[user@rackham2 6_multiqc]$ ls -l 
drwxrwsr-x 2 user g201XXXX 4.0K Sep  6 22:33 multiqc_data 
-rw-rw-r-- 1 user g201XXXX 1.3M Sep  6 22:33 multiqc_report.html

 Open the MultiQC HTML report using firefox  and/or transfer to your computer and inspect

the report.

+

 

2.7 Differential gene expression
The easiest way to perform differential expression is to use one of the statistical packages, within

R environment, that were speci�cally designed for analyses of read counts arising from RNA-seq,

SAGE and similar technologies. Here, we will one of such packages called edgeR. Learning R is



beyond the scope of this course so we prepared basic ready to run R scripts to �nd DE genes

between conditions KO and Wt.

Move to the 5_dge  directory and load R modules for use.

module load R/3.4.3 
module load R_packages/3.4.3

Use pwd  to check if you are standing in the correct directory. Copy the following �les to the

5_dge  directory.

/sw/share/compstore/courses/ngsintro/rnaseq/main/5_dge/annotations.txt

/sw/share/compstore/courses/ngsintro/rnaseq/main/5_dge/dge.R

Make sure you have the counts.txt  �le from featureCounts. If not, you can copy this �le too.

/sw/share/compstore/courses/ngsintro/rnaseq/main/5_dge/counts.txt

cp /sw/share/compstore/courses/ngsintro/rnaseq/main/5_dge/annotations.txt . 
cp /sw/share/compstore/courses/ngsintro/rnaseq/main/5_dge/dge.R . 
cp /sw/share/compstore/courses/ngsintro/rnaseq/main/5_dge/counts.txt .

Now, run the R script in 5_dge  directory.

Rscript dge.R

This should have produced the following output �les:

[user@rackham2 5_dge]$ ls -l 
 
-rw-rw-r-- 1 user g201XXXX 8.9M Nov 29 16:31 dge_data.RData 
-rw-rw-r-- 1 user g201XXXX 2.6M Nov 29 16:31 dge_results.txt

 Copy the results text �le ( dge_results.txt ) to your computer and inspect the results. What

are the columns? How many differentially expressed genes are present at an FDR cutoff of 0.05?

How many genes are upregulated and how many are down-regulated? How does this change if we

set a fold-change cut-off of 1?

 Open in a spreadsheet editor like Microsoft Excel or LibreOf�ce Calc.

If you do not have the results or were unable to run the DGE step, you can copy these two here

which will be required for functional annotation (optional).

cp /sw/share/compstore/courses/ngsintro/rnaseq/main/5_dge/dge_results.txt . 
cp /sw/share/compstore/courses/ngsintro/rnaseq/main/5_dge/dge_data.Rdata .

 

3 Bonus exercises

These exercises are completely optional and to be run only if you have time and if it

interests you.



Markers:    Run locally    Run on Uppmax

3.1 Functional annotation
In this part of the exercise we will address the question which biological processes are affected in

the experiment; in other words we will functionally annotate the results of the analysis of

differential gene expression (performed in the main part of the exercise). We will use Gene

Ontology (GO) and Reactome databases.

When performing this type of analysis, one has to keep in mind that the analysis is only as accurate

as the annotation available for your organism. So, if working with non-model organisms which do

have experimentally-validated annotations (computationally inferred), the results may not be fully

re�ecting the actual situation.

There are many methods to approach the question as to which biological processes and pathways

are over-represented amongst the differentially expressed genes, compared to all the genes

included in the DE analysis. They use several types of statistical tests (e.g. hypergeometric test,

Fisher’s exact test etc.), and many have been developed with microarray data in mind. Not all of

these methods are appropriate for RNA-seq data, which as you remember from the lecture,

exhibit length bias in power of detection of differentially expressed genes (i.e. longer genes, which

tend to gather more reads, are more likely to be detected as differentially expressed than shorter

genes, solely because of the length).

We will use the R / Bioconductor package goseq, speci�cally designed to work with RNA-seq data.

This package provides methods for performing Gene Ontology and pathway analysis of RNA-seq

data, taking length bias into account.

In this part, we will use the same data as in the main work�ow. The starting point of the exercise is

the �le with results of the differential expression produced in the main part of the exercise.

Running functional annotation is typically not computationally heavy and it may be easier to run it

on your local computer. Therefore this module can be performed on Uppmax or on your local

computer. If you choose to run locally on your computer, you need have R statistical programming

language (https://www.r-project.org/) installed. An optional graphical interface to R such as

RStudio (https://www.rstudio.com/products/rstudio/) is also recommended.

3.1.1 Preparation

 Install required R packages by running the script below in R.

source("http://bioconductor.org/biocLite.R")  
biocLite(c("goseq","GO.db","reactome.db","org.Mm.eg.db"))

 Copy this directory /sw/share/compstore/courses/ngsintro/rnaseq/bonus/funannot  to

your computer by running the below command in a LOCAL terminal and NOT on Uppmax.

scp -r user@rackham.uppmax.uu.se:/sw/share/compstore/courses/ngsintro/rnaseq/b
onus/funannot ./

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/


Alternatively, all users can use an SFTP browser like Filezilla (https://�lezilla-project.org/) or

Cyberduck (https://cyberduck.io/) for a GUI interface. Windows users can also use the

MobaXterm SFTP �le browser to drag and drop.

 Copy the directory to rnaseq  directory.

cp -r /sw/share/compstore/courses/ngsintro/rnaseq/bonus/funannot /proj/snic201
9-8-3/nobackup/[user]/rnaseq/

3.1.2 Work�ow

 Load R module and R packages

module load R/3.4.3 
module load R_packages/3.4.3

 Change to the funannot  directory in your rnaseq  directory.

cd funannot

 Set the working directory to funannot .

  The funannot  directory should look like this:

[user@rackham2 funannot]$ ls -l 
drwxrwsr-x 2 user g201XXXX 4.0K Sep  6 20:13 annot 
-rw-rw-r-- 1 user g201XXXX 4.7K Sep  6 20:13 annotate_de_results.R 
drwxrwsr-x 4 user g201XXXX 4.0K Sep  6 20:13 data 

 Run the functional annotation script from the linux console.

Rscript annotate_de_results.R

 Run this from within R.

source("annotate_de_results.R")

Now your funannot  directory should look like this:

[user@rackham2 funannot]$ ls -l 
drwxrwsr-x 2 user g201XXXX 4.0K Sep  6 20:13 annot 
-rw-rw-r-- 1 user g201XXXX 4.7K Sep  6 20:13 annotate_de_results.R 
drwxrwsr-x 4 user g201XXXX 4.0K Sep  6 20:13 data 
drwxrwsr-x 2 user g201XXXX 4.0K Sep  6 20:18 GO_react_results 
-rw-rw-r-- 1 user g201XXXX  52K Sep  6 20:18 Rplots.pdf

The results are saved in the directory GO_react_results . The plot Rplots.pdf  can be opened

in the �refox browser as such firefox Rplots.pdf .

3.1.3 Interpretation

https://filezilla-project.org/
https://cyberduck.io/


The results are saved as tables in the directory GO_react_results . There are four tables: GO

terms for up-regulated genes, GO terms for down-regulated genes and similarily, Reactome

pathways for up-regulated genes and Reactome pathways for down-regulated genes.

  Take a quick look at some of these �les.

+

The columns of the results tables are:

# go 
category over_represented_pvalue under_represented_pvalue numDEInCat numInCat 
term ontology 
# reactome 
category over_represented_pvalue under_represented_pvalue numDEInCat numInCat 
path_name

You can view the tables in a text editor ( nano , gedit  etc), and try to �nd GO terms and pathways

relevant to the experiment using a word search functionality. You could download these �les to

your computer and import them into a spreadsheet program like MS Excel or LibreOf�ce Calc.

  Try to use grep  to �nd a match using a keyword, say phosphorylation.

+

 Have a look at the GO terms and see if you think the functional annotation re�ects the biology

of the experiments we have just analysed?

3.2 IGV browser
Data visualisation is important to be able to clearly convey results, but can also be very helpful as

tool for identifying issues and note-worthy patterns in the data. In this part you will use the BAM

�les you created earlier in the RNA-seq lab and use IGV

(http://software.broadinstitute.org/software/igv/) (Integrated Genomic Viewer) to visualize the

mapped reads and genome annotations. In addition we will produce high quality plots of both the

mapped read data and the results from differential gene expression.

If you are already familiar with IGV you can load the mouse genome and at least one BAM �le from

each of the treatments that you created earlier. The functionality of IGV is the same as if you look

at genomic data, but there are a few of the features that are more interesting to use for RNA-seq

data.

Integrated genomics viewer from Broad Institute is a nice graphical interface to view bam �les and

genome annotations. It also has tools to export data and some functionality to look at splicing

patterns in RNA-seq data sets. Even though it allows for some basic types of analysis it should be

used more as a nice way to look at your mapped data. Looking at data in this way might seem like a

daunting approach as you can not check more than a few regions, but in in many cases it can reveal

mapping patterns that are hard to catch with just summary statistics.

For this tutorial you can chose to run IGV directly on your own computer () or on Uppmax ().

If you chose to run it on your own computer you will have to download some of the BAM �les (and

the corresponding index �les) from Uppmax. If you have not yet installed IGV you also have to

download (http://software.broadinstitute.org/software/igv/download) the program.

http://software.broadinstitute.org/software/igv/
http://software.broadinstitute.org/software/igv/download


 Copy two BAM �les (one from each experimental group, for example; SRR3222409 and

SRR3222412) and the associated index ( .bam.bai ) �les to your computer by running the below

command in a LOCAL terminal and NOT on Uppmax.

scp user@rackham.uppmax.uu.se:/proj/snic2019-8-3/nobackup/rnaseq/[user]/3_mapp
ing/SRR3222409.bam ./ 
scp user@rackham.uppmax.uu.se:/proj/snic2019-8-3/nobackup/rnaseq/[user]/3_mapp
ing/SRR3222409.bam.bai ./ 
scp user@rackham.uppmax.uu.se:/proj/snic2019-8-3/nobackup/rnaseq/[user]/3_mapp
ing/SRR3222412.bam ./ 
scp user@rackham.uppmax.uu.se:/proj/snic2019-8-3/nobackup/rnaseq/[user]/3_mapp
ing/SRR3222412.bam.bai ./

Alternatively, all users can use an SFTP browser like Filezilla (https://�lezilla-project.org/) or

Cyberduck (https://cyberduck.io/) for a GUI interface. Windows users can also use the

MobaXterm SFTP �le browser to drag and drop.

 For Linux and Mac users, Log in to Uppmax in a way so that the generated graphics are

exported via the network to your screen. This will allow any graphical interface that you start on

your compute node to be exported to your computer. However, as the graphics are exported over

the network, it can be fairly slow in redrawing windows and the experience can be fairly poor.

Login in to Uppmax with X-forwarding enabled:

ssh -Y username@rackham.uppmax.uu.se 
ssh -Y computenode

 An alternative method is to login through Rackham-GUI (https://rackham-

gui.uppmax.uu.se/main/). Once you log into this interface you will have a linux desktop interface in

a browser window. This interface is running on the login node, so if you want to do any heavy

lifting you need to login to your reserved compute node also here. This is done by opening a

terminal in the running linux environment and log on to your compute node as before. NB! If you

have no active reservation you have to do that �rst.

 Load necessary modules and start IGV

module load bioinfo-tools 
module load IGV/2.4.2 
igv-core

 This should start the IGV so that it is visible on your screen. If not please try to reconnect to

Uppmax or consider running IGV locally as that is often the fastest and most convenient solution.

Once we have the program running, you select the genome that you would like to load. As seen in

the image below. Choose Mouse mm10 .

https://filezilla-project.org/
https://cyberduck.io/
https://rackham-gui.uppmax.uu.se/main/


Note that if you are working with a genome that are not part of the available genomes in IGV, one

can create genome �les from within IGV. Please check the manual of IGV for more information on

that.

To open your BAM �les, go to File > Load from file...  and select your BAM �le and make

sure that you have a .bai  index for that BAM �le in the same folder. You can repeat this and open

multiple BAM �les in the same window, which makes it easy to compare samples. For every �le you

open a number of panels are opened that visualize the data in different ways. The �rst panel

named Coverage summarises the coverage of base-pairs in the window you have zoomed to. The

second that ends with the name Junctions, show how reads were spliced to map, eg. reads that

stretch over multiple exons are split and mapped one part in one exon and the next in another

exon. The third panel shows the reads as they are mapped to the genome. If one right click with the

mouse on the read panel there many options to group and color reads.

To see actual reads you have to zoom in until the reads are drawn on screen. If you have a gene of

interest you can also use the search box to directly go to that gene.

If you for example search for the gene Mocs2, you should see a decent amount of reads mapping

to this region. For more detailed information on the splice reads you can instead of just looking at

the splice panel right click on the read panel and select Sashimi plots. This will open a new window

showing in an easy readable fashion how reads are spliced in mapping and you will also be able to

see that there are differences in between what locations reads are spliced. This hence gives some

indication on the isoform usage of the gene.

To try some of the features available in IGV, you can try to address the following questions:

 Are the reads you mapped from a stranded or unstranded library?

 Pick a gene from the top list of most signi�cant genes from the DE analysis and search for it

using the search box in IGV. Would you say that the pattern you see here con�rms the gene as

differentially expressed between treatments? For example; Klk10.



 One can visualize all genes in a given pathway using the gene list option under Regions in the

menu. Would you agree with what they state in the paper about certain pathways being down-

regulated. If you need hints for how to proceed, see Gene List tutorial

(http://software.broadinstitute.org/software/igv/gene_list_view) at Broad.

3.3 RNA-Seq plots
Creating high quality plots of RNA-seq analysis are most easily done using R. Depending on your

pro�ciency in reading R code and using R, you can in this section either just call scripts from the

command lines with a set of arguments or you can open the R script in a text editor, and run the

code step by step from an interactive R session.

For this tutorial, the R scripts are to be run on Uppmax ().

 Copy the R script �les from the following directory:

/sw/share/compstore/courses/ngsintro/rnaseq/bonus/visual/  to your 5_dge  directory.

cp /sw/share/compstore/courses/ngsintro/rnaseq/bonus/visual/*.R /proj/snic2019
-8-3/nobackup/[user]/rnaseq/5_dge/

You should have the following �les:

[user@rackham2 visual]$ ls -l 
-rw-rw-r-- 1 user g201XXXX 2.0K Sep 20  2016 gene.R 
-rw-rw-r-- 1 user g201XXXX  842 Sep 22  2016 heatmap.R 
-rw-rw-r-- 1 user g201XXXX  282 Sep 22  2016 ma.R 
-rw-rw-r-- 1 user g201XXXX  340 Sep 22  2016 mds.R 
-rw-rw-r-- 1 user g201XXXX  669 Sep 22  2016 volcano.R

3.3.1 MDS plot

A popular way to visualise general patterns of gene expression in your data is to produce either

PCA (Principal Component Analysis) or MDS (Multi Dimensional Scaling) plots. These methods

aim at summarizing the main patterns of expression in the data and display them on a two-

dimensional space and still retain as much information as possible. To properly evaluate these kind

of results is non-trivial, but in the case of RNA-seq data we often use them to get an idea of the

difference in expression between treatments and also to get an idea of the similarity among

replicates. If the plots shows clear clusters of samples that corresponds to treatment it is an

indication of treatment actually having an effect on gene expression. If the distance between

replicates from a single treatment is very large it suggests large variance within the treatment,

something that will in�uence the detection of differentially expressed genes between treatments.

Run the mds.R  script as this.

Rscript mds.R 

This generates a �le named MDS.png in the 5_dge  folder. To view it, use eog MDS.png &  or copy

it to your local disk.

http://software.broadinstitute.org/software/igv/gene_list_view


 Based on these results are you surprised that your DE analysis detected a fairly large number

of signi�cant genes?

3.3.2 MA plot

An MA-plot plots the mean expression and estimated log-fold-change for all genes in an analysis.

Run the ma.R  script in the 5_dge  directory.

Rscript ma.R 

This generates a �le named MA.png in the 5_dge  folder. To view it, use eog MA.png &  or copy it

to your local disk.



 What do you think the red dots represent?

3.3.3 Volcano plot

A related type of �gure will instead plot fold change (on log2 scale) on the x-axis and -log10 p-

value on the y-axis. Scaling like this means that genes with lowest p-value will be found at the top

of the plot. In this example we will highlight (in red) the genes that are signi�cant at the 0.05 level

after correction for multiple testing and that have an estimated fold change larger than 2.

Run the script named volcano.R  in the 5_dge  directory.

Rscript volcano.R 

This generates a �le named Volcano.png in the 5_dge  folder. To view it, use eog Volcano.png &

or copy it to your local disk.



 Anything noteworthy about the patterns in the plot?

3.3.4 Heatmap

Another popular plots for genome-wide expression patterns is heatmaps for sets of genes. If you

run the script called heatmap.R  from the folder 5_dge , it will extract the 50 genes that have the

lowest p-value in the experiment and create a heatmap from these. In addition to colorcoding the

expression levels over samples for the genes it also clusters the samples and genes based on

inferred distance between them.

Run the script named heatmap.R  in the 5_dge  directory.

Rscript heatmap.R 

This generates a �le named Heatmap.png in the 5_dge  folder. To view it, use

eog Heatmap.png &  or copy it to your local disk.



 Compare this plot to a similar plot in the paper behind the data.

Most of these plots can be done with a limited set of code. In many cases these standard plots can

be created with two to three lines of code as the packages that has been written to handle RNA-

seq expression data often contains easy to use functions for generating them. But, creating

publication-quality custom plots can take a lot more tweaking.

3.4 De-novo transcriptome assembly



Trinity is one of several de-novo transcriptome assemblers. By ef�ciently constructing and

analyzing sets of de Bruijn graphs, Trinity reconstructs a large fraction of transcripts, including

alternatively spliced isoforms and transcripts from recently duplicated genes. This approach

provides a uni�ed solution for transcriptome reconstruction in any sample, especially in the

absence of a reference genome.

Grabherr MG, Haas BW, Yassour M et al. (2011) Full-length transcriptome assembly from RNA-

Seq data without a reference genome. Nature Biotechnology. 2011 May 15;29(7):644-52

(https://www.nature.com/articles/nbt.1883).

3.4.1 Getting started

Trinity combines three independent software modules: Inchworm, Chrysalis, and Butter�y,

applied sequentially to process large volumes of RNA-Seq reads. Trinity partitions the sequence

data into many individual de Bruijn graphs, each representing the transcriptional complexity at at

a given gene or locus, and then processes each graph independently to extract full-length splicing

isoforms and to tease apart transcripts derived from paralogous genes.

Brie�y, the process works like so:

Inchworm assembles the RNA-Seq data into the unique sequences of transcripts, often

generating full-length transcripts for a dominant isoform, but then reports just the unique

portions of alternatively spliced transcripts.

Chrysalis clusters the Inchworm contigs into clusters and constructs complete de Bruijn

graphs for each cluster. Each cluster represents the full transcriptional complexity for a

given gene (or sets of genes that share sequences in common). Chrysalis then partitions the

full read set among these disjoint graphs.

Butter�y then processes the individual graphs in parallel, tracing the paths that reads and

pairs of reads take within the graph, ultimately reporting full-length transcripts for

alternatively spliced isoforms, and teasing apart transcripts that corresponds to paralogous

genes.

A basic recommendation is to have 1G of RAM per 1M pairs of Illumina reads in order to run the

Inchworm and Chrysalis steps. Simpler transcriptomes require less memory than complex

transcriptomes. Butter�y requires less memory and can also be spread across multiple processors.

The entire process can require ~1 hour per million pairs of reads in the current implementation.

There are various things that can be done to modify performance. Please review the guidelines in

the of�cial Trinity documentation for more advice on this topic. Typical Trinity usage is as follows:

Trinity \ 
--seqType (fq for fastq or fa for fast) \ 
--left ~/path/to/reads_1.fq \ 
--right ~/path/to/reads_2.fq (or --single for single reads) \ 
--CPU 8 \ 
--output ~/path/to/output_dir

3.4.2 Running Trinity

https://www.nature.com/articles/nbt.1883


In the following exercise, you will have chance to run trinity on a data set that is suitable to be

�nished within a short lab session. Note that for many larger data sets and/or complex

transcriptomes running times and memory requirements might be much larger than in this

example. The actual commands to run trinity is very easy and the manual at Trinity Wiki

(https://github.com/trinityrnaseq/trinityrnaseq/wiki) answers most questions related to running

the program. The major challenge with running de-novo assembly projects is not to get the

programs to run, but rather to evaluate the results after the run. In many cases, a very large

number of potential transcripts are generated and often try to use sequence properties to �lter

the initial data. In addition, one often tries to compare the obtained sequences to closely related

species to try to predict open reading frames to get a feeling for how the experiment has turned

out.

In order to get a feel for this, we will assemble two data sets in the exercise and use

simple unix tools to calculate basics stats on the assembled sequences. The key to

get going with these types of analysis is to realize that one does not need a

specialised program to collect basic summary statistics from text �les (note that

fasta �les are simple text �les of a speci�ed structure).

Create a directory named assembly  in your rnaseq  directory. Then copy the fasta �les from this

location /sw/share/compstore/courses/ngsintro/rnaseq/bonus/assembly .

cd rnaseq 
mkdir assembly 
cd assembly 
cp /sw/share/compstore/courses/ngsintro/rnaseq/bonus/assembly/*.fasta /proj/sn
ic2019-8-3/nobackup/[user]/rnaseq/assembly/

Have a look at the example data used in this exercise. The data is obtained from mouse dendritic

cells (mouse_left.fasta and mouse_right.fasta) and a white�y (white�y_both.fasta). The mouse

data is strand-speci�c (RF) and the white�y data is unstranded. For strand-speci�c data, specify

the library type. There are four library types:

Paired reads: RF: �rst read (/1) of fragment pair is sequenced as anti-sense (reverse(R)), and

second read (/2) is in the sense strand (forward(F)); typical of the dUTP/UDG sequencing method.

FR: �rst read (/1) of fragment pair is sequenced as sense (forward), and second read (/2) is in the

antisense strand (reverse)

Unpaired (single) reads: F: the single read is in the sense (forward) orientation R: the single read is

in the antisense (reverse) orientation

By setting the -SS_lib_type  parameter to one of the above, you are indicating that the reads are

strand-speci�c. By default, reads are treated as not strand-speci�c.

 Check the manual (https://github.com/trinityrnaseq/trinityrnaseq/wiki) of Trinity again and try

to �gure out what parameters and settings that are needed to run trinity on the test data.

Remember to try and use all 8 cores. Create a bash script named trinity.sh  in the scripts

directory.

Note that trinity version 2.8.2 is available as a module on Uppmax and needs several other

modules to work, namely, samtools 1.6, jelly�sh 2.2.6 and Salmon 0.9.1.

https://github.com/trinityrnaseq/trinityrnaseq/wiki
https://github.com/trinityrnaseq/trinityrnaseq/wiki


We have the script below:

+

 It is recommended to use full paths for sequence �les with Trinity. Depending on version of

Trinity used --max_memory  is sometimes given by the command --JM .

Run the command in the assembly  directory.

bash ../scripts/trinity.sh

3.4.3 Assess the data

Explore the Trinity output �le Trinity.fasta  located in the trinity_output  directory (or

output directory you speci�ed).

Transcripts are grouped as follows:

components: the set of all sequences that share at least one k-mer (including paralogs)

contigs: transcripts that share a number of k-mers (the set of isoforms of a gene)

sequences: (isoforms and allelic variation)

 Count the number of sequences in the Trinity.fasta  �le ( Try using the unix commands

grep  and wc )

+

 What is grep  doing? What is the -l  switch doing?

Get basic information about the assembly with TrinityStats.

/sw/apps/bioinfo/trinity/2.8.2/rackham/util/TrinityStats.pl Trinity.fasta

 How many “genes” did Trinity assemble? How many transcripts? How large is the assembly?

(Number of bases) What is N50?

 Filter out sequences shorter than 1000 nucleotides. ( Do a web search for appropriate tools.

Someone else must have had the exact same problem. Count the number of sequences again)

+

 What is the fasta_formatter  step doing?

 Align some sequences to a protein database and assess full-lengthness using NCBI blast

database. Also try to see if you can �nd instances of spliced genes in your data by using the UCSC

genome browser (do a web search to �nd it)

Select BLAT from the menu at the top of the page and paste in a mouse transcript sequence

from Trinity.fasta .

Select the mouse/mm10 genome and click Submit.

Click on the top scoring hit.

Examine the alignments by clicking Details on the resulting page.

Your sequences will be displayed in the browser.

Enable the mouse annotations (ENSEMBL gene build, UCSC genes, human proteins etc.).



Optional

 Do a new transcriptome assembly of white�y RNA-Seq data using above code as help.

 

4 sbatch

You are not required to run anything practically in this section. This is just to read

and understand.

We have throughout this tutorial written bash scripts and run them from the terminal directly.

Remember that we are not running on the login node. We have pre-allocated resources, then

logged in to a compute node to run tasks. This is called working interactively on Uppmax. This is

�ne for tutorials and testing purposes. But, if you were to actually work on Uppmax, you would

follow a slightly different approach.

The standard work�ow on Uppmax is to login to the login node and then submit tasks as jobs to

something called a Slurm queue. We haven’t used this option, because it involves waiting for an

unpredictable amount of time for your submitted job to execute. In this section, we will take a look

at how to modify a standard bash script to work with Slurm job submission.

This is how our standard bash script for mapping looks like:

#!/bin/bash 
 
# load modules 
module load bioinfo-tools 
module load star/2.5.2b 
 
# create output file name 
prefix="${1/_*/}" 
 
star \ 
--runMode alignReads \ 
--genomeDir "../reference/mouse" \ 
--runThreadN 8 \ 
--readFilesCommand zcat \ 
--readFilesIn $1 $2 \ 
--sjdbGTFfile "../reference/Mus_musculus.GRCm38.93.gtf" \ 
--outFileNamePrefix "$prefix" \ 
--outSAMtype BAM SortedByCoordinate

We add SBATCH  commands to the above script. The new script looks like this:



#!/bin/bash 
 
#SBATCH -A snic2019-8-3 
#SBATCH -p core 
#SBATCH -n 8 
#SBATCH -t 2:00:00 
#SBATCH -J star-align 
 
# load modules 
module load bioinfo-tools 
module load star/2.5.2b 
 
# create output file name 
prefix="${1/_*/}" 
 
star \ 
--runMode alignReads \ 
--genomeDir "../reference/mouse" \ 
--runThreadN 8 \ 
--readFilesCommand zcat \ 
--readFilesIn $1 $2 \ 
--sjdbGTFfile "../reference/Mus_musculus.GRCm38.93.gtf" \ 
--outFileNamePrefix "$prefix" \ 
--outSAMtype BAM SortedByCoordinate

The SBATCH  commands in the above script is specifying the account name to use resources from,

the required number of cores, the time required for the job and a job name.

 If you run this as a normal bash script like this ./star_align.sh ... , the SBATCH  comments

have no effect (they are treated as comments) and the contents of the script will immediately start

executing. But if you run this as script as sbatch ./star_align.sh ... , the script is submitted

as a job to the Uppmax Slurm queue. In this case, the SBATCH  lines are interpreted and used by

Slurm. At some point, your submitted job will reach the top of the queue and then the script will

start to be executed.

You can check your jobs in the queue by running the following command.

jobinfo -u user

And this gives a list like this:



2019 NBIS (https://nbis.se/) | SciLifeLab (https://www.scilifelab.se/)

 (https://nbis.se/)  (https://twitter.com/NBISwe) 

(https://www.linkedin.com/company/nbisweden/)

CLUSTER: rackham 
Running jobs: 
   JOBID PARTITION                      NAME     USER        ACCOUNT ST         
START_TIME  TIME_LEFT  NODES CPUS NODELIST(REASON) 
 5006225      core                    (null) user       g201XXXX  R 2018-09-12
T14:00:03      44:31      1    1 r169 
 5006229      core                    (null) user       g201XXXX  R 2018-09-12
T14:00:03      44:31      1    1 r169 
 5006352      core                    (null) user       g201XXXX  R 2018-09-12
T14:04:14      48:42      1    1 r178 
 5006355      core                    (null) user       g201XXXX  R 2018-09-12
T14:05:17      49:45      1    1 r169 
 5006356      core                    (null) user       g201XXXX  R 2018-09-12
T14:06:08      50:36      1    5 r179

If the job is pending, then you will see PD  in the ST  column. If your job is running, you should see

R . Once your job starts running, you will see a �le named slurm-XXXX.out  in the directory in

which you submitted the job. This is the standard-out from that job. ie; everything that you would

normally see printed to your screen when running locally, is printed to this �le when running as a

job. Once the job is over, one would inspect the slurm output �le.

head slurm-XXXX.out 
tail slurm-XXXX.out 
cat slurm-XXXX.out

 

5 Conclusion
We hope that you enjoyed getting your hands wet working on some real-ish data. In this tutorial,

we have covered the most important data processing steps that may be enough when the libraries

are good. If not, there are plenty of troubleshooting procedures to try before discarding the data.

And once the count table are in place, the biostatistics and data mining begins. There are no well-

de�ned solutions here, all depends on the experiment and questions to be asked, but we strongly

advise learning R. Not only to use the speci�cally designed statistical packages to analyze NGS

count data, but also to be able to handle the data and results as well as to generate high-quality

plots. There are many available tools and well-written tutorials with examples to learn from.

For those interested in RNA-Seq analysis, SciLifeLab offers a more advanced course in RNA-Seq

analysis each semester. For more information, see Courses

(https://www.scilifelab.se/education/courses%26training) offered by SciLifeLab.

This course material was built on content created by Thomas Kallman, Agata Smialowska and Olga

Dethlefsen for the previous courses.

https://nbis.se/
https://www.scilifelab.se/
https://nbis.se/
https://twitter.com/NBISwe
https://www.linkedin.com/company/nbisweden/
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