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RNA-seq has become a powerful approach to study the continually changing cellular
transcriptome. Here, one of the most common questions is to identify genes that are
di�erentially expressed between two conditions, e.g. controls and treatment. The main
exercise in this tutorial will take you through a basic bioinformatic analysis pipeline to
answer just that, it will show you how to find di�erentially expressed (DE) genes.

Main exercise

01 Check the quality of the raw reads with FastQC

02 Map the reads to the reference genome using Star

03 Assess the post-alignment quality using QualiMap

04 Count the reads overlapping with genes using featureCounts

05 Find DE genes using edgeR in R

RNA-seq experiment does not necessarily end with a list of DE genes. If you have time
a�er completing the main exercise, try one (or more) of the bonus exercises. The bonus
exercises can be run independently of each other, so choose the one that matches your
interest. Bonus sections are listed below.

Bonus exercises

01 Functional annotation of DE genes using GO/Reactome/Kegg databases

02 Visualisation of RNA-seq BAM files using IGV genome browser

03 RNA-Seq figures and plots using R

1 Data description



04 De-novo transcriptome assembly using Trinity

Expected run times (in minutes, when running all samples) for some of the steps as
shown below when using 8 cores with 64 GB RAM.

Step Time_Min

FastQC 12:00

STAR Mapping 32:00

QualiMap 46:00

MultiQC 13:00

FeatureCounts 03:30

Trinity 40:00

It is not recommended to run every step on all samples are it is not possible to
complete in the available time. Pre-computed files for all steps are made available.
Instructions to copy them are shown at the end of each section.

You are welcome to try your own solutions to the problems, before checking the
solution. Click the +  button to see the suggested solution. There is more than one
way to complete a task. Discuss with person next to you and ask us when in doubt.

Input code blocks are displayed like shown below. The code language is displayed
above the block. Shell scripts (SH) are to be executed in the linux terminal such as
bash. R scripts are to be run in R a�er running R. Output text blocks are marked as
OUTPUT.

SH

command

Markers:    Note    Tip    Discuss    Task

 

1 Data description



The data used in this exercise is from the paper: Poitelon, Yannick, et al. “YAP and TAZ
control peripheral myelination and the expression of laminin receptors in Schwann
cells.” Nature neuroscience 19.7 (2016): 879
(https://www.nature.com/articles/nn.4316). In this study, YAP and TAZ genes were
knocked-down in Schwann cells to study myelination, using the sciatic nerve in mice as
a model.

Myelination is essential for nervous system function. Schwann cells interact with
neurons and the basal lamina to myelinate axons using receptors, signals and
transcription factors. Hippo pathway is a conserved pathway involved in cell contact
inhibition, and it acts to promote cell proliferation and inhibits apoptosis. The pathway
integrates mechanical signals (cell polarity, mechanotransduction, membrane tension)
and gene expression response. In addition to its role in organ size control, the Hippo
pathway has been implicated in tumorigenesis, for example its deregulation occurs in a
broad range of human carcinomas. Transcription co-activators YAP and TAZ are two
major downstream e�ectors of the Hippo pathway, and have redundant roles in
transcriptional activation.

The material for RNA-seq was collected from 2 conditions (Wt and KO), each with 3
biological replicates.

Accession Condition Replicate

SRR3222409 KO 1

SRR3222410 KO 2

SRR3222411 KO 3

SRR3222412 Wt 1

SRR3222413 Wt 2

SRR3222414 Wt 3

 For the purpose of this tutorial, to shorten the time needed to run various
bioinformatics steps, we have downsampled the original files. We randomly
sampled, without replacement, 25% reads from each sample, using fastq-sample
from the toolset fastq-tools (https://homes.cs.washington.edu/~dcjones/fastq-
tools/).

 

https://www.nature.com/articles/nn.4316
https://homes.cs.washington.edu/~dcjones/fastq-tools/


2 Main exercise
The main exercise covers Di�erential Gene Expression (DGE) workflow from raw reads to
a list of di�erentially expressed genes.

2.1 Preparation
 Log in to Uppmax in a way so that the generated graphics are exported via the
network to your screen. Login in to Uppmax with X-forwarding enabled. This will allow
any graphical interface that you start on your compute node to be exported to your
computer.

Linux and Mac users will run this on the terminal. Windows users will run this in a tool
such as MobaXterm.

SH

ssh -XY username@rackham.uppmax.uu.se

2.1.1 Book a node
For the RNA-Seq part of the course (Thu/Fri), we will work on the Rackham cluster. A
standard compute node on cluster Snowy has 128 GB of RAM and 20 cores. Therefore,
each core gives you 6.4 GB of RAM. We will use 8 cores per person for this session which
gives you about 51 GB RAM. The code below is valid to run at the start of the day. If you
are running it in the middle of a day, you need to decrease the time ( -t ). Do not run this
twice and also make sure you are not running computations on a login node.

Book resources for RNA-Seq day 1.

SH

salloc -A g2019007 -t 08:00:00 -p core -n 8 --reservation=g2019007_

3

Book resources for RNA-Seq day 2.

SH

salloc -A g2019007 -t 08:00:00 -p core -n 8 --reservation=g2019007_

4

2.1.2 Set-up directory



Setting up the directory structure is an important step as it helps to keep our raw data,
intermediate data and results in an organised manner. All work must be carried out at
this location /proj/g2019007/nobackup  where [user]  is your user name.

Create a directory named rnaseq . All RNA-Seq related activities must be carried out in
this sub-directory named rnaseq .

SH

mkdir rnaseq

 Set up the below directory structure in your project directory.

[user]/ 

rnaseq/ 

  +-- 1_raw/ 

  +-- 2_fastqc/ 

  +-- 3_mapping/ 

  +-- 4_qualimap/ 

  +-- 5_dge/ 

  +-- 6_multiqc/ 

  +-- reference/ 

  |   +-- mouse/ 

  |   +-- mouse_chr11/ 

  +-- scripts/

+

The 1_raw  directory will hold the raw fastq files (so�-links). 2_fastqc  will hold
FastQC outputs. 3_mapping  will hold the STAR mapping output files. 4_qualimap  will
hold the QualiMap output files. 5_dge  will hold the counts from featureCounts and all
di�erential gene expression related files. 6_multiqc  will hold MultiQC outputs.
reference  directory will hold the reference genome, annotations and STAR indices.

 It might be a good idea to open an additional terminal window. One to navigate
through directories and another for scripting in the scripts  directory.

2.1.3 Create symbolic links
We have the raw fastq files in this remote directory:
/sw/courses/ngsintro/rnaseq/main/1_raw/ . We are going to create symbolic

links (so�-links) for these files from our 1_raw  directory to the remote directory. We do



this because they are large files and simply copying them would use up a lot of storage
space. So�-linking files and folders allows us to work with those files as if they were
actually there. Use pwd  to check if you are standing in the correct directory. You should
be standing here:

/proj/g2019007/nobackup/[user]/rnaseq/1_raw

Run below to create so�links. Note that the command ends in a space followed by a
period.

SH

ln -s /sw/courses/ngsintro/rnaseq/main/1_raw/*.fastq.gz .

Check if your files have linked correctly. You should be able to see as below.

SH

ls -l

OUTPUT



SRR3222409_1.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222409_1.fastq.gz 

SRR3222409_2.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222409_2.fastq.gz 

SRR3222410_1.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222410_1.fastq.gz 

SRR3222410_2.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222410_2.fastq.gz 

SRR3222411_1.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222411_1.fastq.gz 

SRR3222411_2.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222411_2.fastq.gz 

SRR3222412_1.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222412_1.fastq.gz 

SRR3222412_2.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222412_2.fastq.gz 

SRR3222413_1.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222413_1.fastq.gz 

SRR3222413_2.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222413_2.fastq.gz 

SRR3222414_1.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222414_1.fastq.gz 

SRR3222414_2.fastq.gz -> /sw/courses/ngsintro/rnaseq/main/1_raw/SRR

3222414_2.fastq.gz

 

2.2 FastQC
Quality check using FastQC

A�er receiving raw reads from a high throughput sequencing centre it is essential to
check their quality. FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
provides a simple way to do some quality control check on raw sequence data. It
provides a modular set of analyses which you can use to get a quick impression of
whether your data has any problems of which you should be aware before doing any
further analysis.

 Change into the 2_fastqc  directory. Use pwd  to check if you are standing in the
correct directory. You should be standing here:

/proj/g2019007/nobackup/[user]/rnaseq/2_fastqc

Load Uppmax modules bioinfo-tools  and FastQC FastQC/0.11.5 .

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


SH

module load bioinfo-tools 

module load FastQC/0.11.5

Once the module is loaded, FastQC program is available through the command
fastqc . Use fastqc --help  to see the various parameters available to the program.

We will use -t 8 , to specify number of threads, -o  to specify the output directory path
and finally, the name of the input fastq file to analyse. The syntax will look like below.

SH

fastqc -t 8 -o . ../1_raw/filename.fastq.gz

Based on the above command, we will write a bash loop to process all fastq files in the
directory. Writing multi-line commands through the terminal can be a pain. Therefore,
we will run larger scripts from a bash script file. Move to your scripts  directory and
create a new file named fastqc.sh .

You should be standing here to run this:

/proj/g2019007/nobackup/[user]/rnaseq/scripts

The command below creates a new file in the current directory.

SH

touch fastqc.sh

Use nano , vim  or gedit  to edit fastqc.sh .

SH

#!/bin/bash 

for i in ../1_raw/*.fastq.gz 

do 

    echo "Running $i ..." 

    fastqc -t 8 -o . "$i" 

done

While standing in the 2_fastqc  directory, run the file fastqc.sh . Use pwd  to check if
you are standing in the correct directory.

You should be standing here to run this:

/proj/g2019007/nobackup/[user]/rnaseq/2_fastqc



SH

bash ../scripts/fastqc.sh

A�er the fastqc run, there should be a .zip  file and a .html  file for every fastq file.
The .html  file is the report that you need. Open the .html  in the browser and view it.
You only need to do this for one file now. We will do a comparison with all samples
when using the MultiQC tool.

SH

firefox file.html &

 Adding &  at the end sends that process to the background, so that the console is free
to accept new commands.

Optional

Download the .html  file to your computer and view it.

 All users can use an SFTP browser like Filezilla (https://filezilla-project.org/) or
Cyberduck (https://cyberduck.io/) for a GUI interface. Windows users can also use the
MobaXterm SFTP file browser to drag and drop.

Linux and Mac users can use SFTP or SCP by running the below command in a
LOCAL terminal and NOT on Uppmax. Open a terminal locally on your computer,
move to a suitable download directory and run the command below.

SH

scp user@rackham.uppmax.uu.se:/proj/g2019007/nobackup/[user]/rna

seq/2_fastqc/SRR3222409_1_fastqc.html ./

 Go back to the FastQC website and compare your report with the sample report for
Good Illumina data
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html)
and Bad Illumina data
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html).

 Discuss based on your reports, whether your data is of good enough quality and/or
what steps are needed to fix it.

 

2.3 STAR

https://filezilla-project.org/
https://cyberduck.io/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/bad_sequence_fastqc.html


Mapping reads using STAR

A�er verifying that the quality of the raw sequencing reads is acceptable, we will map
the reads to the reference genome. There are many mappers/aligners available, so it
may be good to choose one that is adequate for your type of data. Here, we will use a
so�ware called STAR (Spliced Transcripts Alignment to a Reference) as it is good for
generic purposes, fast, easy to use and has been shown to outperform many of the other
tools when aligning 2x76bp paired-end data. Before we begin mapping, we need to
obtain genome reference sequence ( .fasta  file) and a corresponding annotation file
( .gtf ) and build a STAR index. Due to time constraints, we will practice index building
only on chromosome 11. But, then we will use the pre-prepared full-genome index to
run the actual mapping.

2.3.1 Get reference
It is best if the reference genome ( .fasta ) and annotation ( .gtf ) files come from the
same source to avoid potential naming conventions problems. It is also good to check in
the manual of the aligner you use for hints on what type of files are needed to do the
mapping.

 What is the idea behind building STAR index? What files are needed to build one?
Where do we take them from? Could one use a STAR index that was generated before?
Browse through Ensembl (https://www.ensembl.org/index.html) and try to find the files
needed. Note that we are working with Mouse (Mus musculus).

 Move into the reference  directory and download the Chr 11 genome ( .fasta ) file
and the genome-wide annotation file ( .gtf ) from Ensembl.

You should be standing here to run this:

/proj/g2019007/nobackup/[user]/rnaseq/reference

You are most likely to use the latest version (https://www.ensembl.org/index.html) of
ensembl release genome and annotations when starting a new analysis. For this
exercise, we will choose an older version (79) for compatibility with old code/results.

SH

wget ftp://ftp.ensembl.org/pub/release-79/fasta/mus_musculus/dna/Mu

s_musculus.GRCm38.dna.chromosome.11.fa.gz 

wget ftp://ftp.ensembl.org/pub/release-79/gtf/mus_musculus/Mus_musc

ulus.GRCm38.79.gtf.gz

Decompress the files for use.

SH

https://www.ensembl.org/index.html
https://www.ensembl.org/index.html


gunzip Mus_musculus.GRCm38.dna.chromosome.11.fa.gz 

gunzip Mus_musculus.GRCm38.79.gtf.gz

Check what you have in your directory.

+

OUTPUT

drwxrwsr-x 2 user g201XXXX 4.0K Sep  4 19:33 mouse 

drwxrwsr-x 2 user g201XXXX 4.0K Sep  4 19:32 mouse_chr11 

-rw-rw-r-- 1 user g201XXXX 742M Sep  4 19:31 Mus_musculus.GRCm38.7

9.gtf 

-rw-rw-r-- 1 user g201XXXX 119M Sep  4 19:31 Mus_musculus.GRCm38.dn

a.chromosome.11.fa

2.3.2 Build index
Move into the reference  directory if not already there. Load module STAR version
2.5.2b. Remember to load bioinfo-tools  if you haven’t done so already.

+

 To search for other available versions of STAR, use module spider star .

Create a new bash script in your scripts  directory named star_index.sh  and add
the following lines:

SH

#!/bin/bash 

 

# load module 

module load bioinfo-tools 

module load star/2.7.0e 

 

star \ 

--runMode genomeGenerate \ 

--runThreadN 8 \ 

--genomeDir ./mouse_chr11 \ 

--genomeFastaFiles ./Mus_musculus.GRCm38.dna.chromosome.11.fa \ 

--sjdbGTFfile ./Mus_musculus.GRCm38.79.gtf



The above script means that STAR should run in genomeGenerate  mode to build an
index. It should use 8 threads for computation. The output files must be directed to the
indicated directory. The paths to the .fasta  file and the annotation file ( .gtf ) is also
shown. STAR arguments are described in the STAR manual
(https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf).

Use pwd  to check if you are standing in the correct directory. Then, run the script from
the reference  directory.

SH

bash ../scripts/star_index.sh

Once the indexing is complete, move into the mouse_chr11  directory and make sure
you have all the files.

+

OUTPUT

-rw-rw-r-- 1 user g201XXXX   10 Sep  4 19:31 chrLength.txt 

-rw-rw-r-- 1 user g201XXXX   13 Sep  4 19:31 chrNameLength.txt 

-rw-rw-r-- 1 user g201XXXX    3 Sep  4 19:31 chrName.txt 

-rw-rw-r-- 1 user g201XXXX   12 Sep  4 19:31 chrStart.txt 

-rw-rw-r-- 1 user g201XXXX 1.7M Sep  4 19:33 exonGeTrInfo.tab 

-rw-rw-r-- 1 user g201XXXX 805K Sep  4 19:33 exonInfo.tab 

-rw-rw-r-- 1 user g201XXXX  56K Sep  4 19:33 geneInfo.tab 

-rw-rw-r-- 1 user g201XXXX 121M Sep  4 19:33 Genome 

-rw-rw-r-- 1 user g201XXXX  553 Sep  4 19:31 genomeParameters.txt 

-rw-rw-r-- 1 user g201XXXX 967M Sep  4 19:33 SA 

-rw-rw-r-- 1 user g201XXXX 1.5G Sep  4 19:33 SAindex 

-rw-rw-r-- 1 user g201XXXX 522K Sep  4 19:33 sjdbInfo.txt 

-rw-rw-r-- 1 user g201XXXX 463K Sep  4 19:33 sjdbList.fromGTF.out.t

ab 

-rw-rw-r-- 1 user g201XXXX 463K Sep  4 19:33 sjdbList.out.tab 

-rw-rw-r-- 1 user g201XXXX 480K Sep  4 19:33 transcriptInfo.tab

This index for chr11 was created just to familiarise with the steps. We will use the index
built on the whole genome for downstream exercises. The index for the whole genome
was prepared for us before class in the very same way as for the chromosome 11 in
steps above. It just requires more time (ca. 4h) to run. The index is found here:
/sw/courses/ngsintro/rnaseq/reference/mouse/ .

https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf


So�-link all the files inside /sw/courses/ngsintro/rnaseq/reference/mouse/  to
the directory named mouse  which is inside your rnaseq/reference/ .

You should be standing here to run this:

/proj/g2019007/nobackup/[user]/rnaseq/reference

+

2.3.3 Map reads
Now that we have the index ready, we are ready to map reads. Move to the directory
3_mapping . Use pwd  to check if you are standing in the correct directory.

You should be standing here to run this:

/proj/g2019007/nobackup/[user]/rnaseq/3_mapping

We will create so�links to the fastq files from here to make things easier.

SH

cd 3_mapping 

ln -s ../1_raw/* .

These are the parameters that we want to specify for the STAR mapping run:

Run mode is now alignReads
Specify the full genome index path
Specify the number of threads
We must indicate the input is gzipped and must be uncompressed
Indicate read1 and read2 since we have paired-end reads
Specify the annotation (.gtf) file
Specify an output file name
Specify that the output must be BAM and the reads must be sorted by coordinate

STAR arguments are described in the STAR manual
(https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf). Our mapping
script will look like this:

SH

https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf


star \ 

--runMode alignReads \ 

--genomeDir "../reference/mouse" \ 

--runThreadN 8 \ 

--readFilesCommand zcat \ 

--readFilesIn sample_1.fastq.gz sample_2.fastq.gz \ 

--sjdbGTFfile "../reference/Mus_musculus.GRCm38.79.gtf" \ 

--outFileNamePrefix "sample1" \ 

--outSAMtype BAM SortedByCoordinate

But, we will generalise the above script to be used as a bash script to read any two input
files and to automatically create the output filename.

 Now create a new bash script file named star_align.sh  in your scripts  directory
and add the script below to it.

+

In the above script, the two input fastq files as passed in as parameters $1  and $2 . The
output filename is automatically created using this line prefix='${1/_*/}'  from
input filename of $1 . For example, a file named sample_1.fastq.gz  will have the
_1.fastq.gz  removed and the prefix will be just sample . This approach will work

only if your filenames are labelled suitably.

Now we can run the bash script like below while standing in the 3_mapping  directory.

SH

bash ../scripts/star_align.sh sample_1.fastq.gz sample_2.fastq.gz

Now, do the same for the other samples as well if you have time. Otherwise just run for
one sample and results for the other samples can be copied (See end of this section).

Optional

Try to create a new bash loop script ( star_align_batch.sh ) to iterate over all
fastq files in the directory and run the mapping using the star_align.sh  script.
Note that there is a bit of a tricky issue here. You need to use two fastq files ( _1  and
_2 ) per run rather than one file.

+

Run the star_align_batch.sh  script in the 3_mapping  directory.



SH

bash ../scripts/star_align_batch.sh

At the end of the mapping jobs, you should have the following list of output files for
every sample:

SH

ls -l

OUTPUT

-rw-rw-r-- 1 user g201XXXX 628M Sep  6 00:54 SRR3222409Aligned.sort

edByCoord.out.bam 

-rw-rw-r-- 1 user g201XXXX 1.9K Sep  6 00:54 SRR3222409Log.final.ou

t 

-rw-rw-r-- 1 user g201XXXX  21K Sep  6 00:54 SRR3222409Log.out 

-rw-rw-r-- 1 user g201XXXX  482 Sep  6 00:54 SRR3222409Log.progres

s.out 

-rw-rw-r-- 1 user g201XXXX 3.6M Sep  6 00:54 SRR3222409SJ.out.tab 

drwx--S--- 2 user g201XXXX 4.0K Sep  6 00:50 SRR3222409_STARgenome

The .bam  file contains the alignment of all reads to the reference genome in binary
format. BAM files are not human readable directly. To view a BAM file in text format, you
can use samtools view  functionality.

SH

module load samtools/1.6 

samtools view SRR3222409Aligned.sortedByCoord.out.bam | head

OUTPUT



SRR3222409.8816556      163     1       3199842 255     101M    =    

3199859 116 TTTTAAAGTTTTACAAGAAAAAAAATCAGATAACCGAGGAAAATTATTCATTATG

AAGTACTACTTTCCACTTCATTTCATCACAAATTGTAACTTACTTA DDBDDIIIHIIHHHIHIHHI

IIIIDHHIIIIIIIIIIIIIIHIIIIHIIIEHHIIIHIIIIGIIIIIIIIIIIIIIHIIHEHIIIII

IHIIIIIHIIIIII        NH:i:1  HI:i:1  AS:i:198        nM:i:0 

SRR3222409.8816556      83      1       3199859 255     99M     =    

3199842 -116AAAAAAAATCAGATAACCGAGGAAAATTATTCATTATGAAGTACTACTTTCCACT

TCATTTCATCACAAATTGTAACTTACTTAACTGACCAAAAAAAC   IIIIIHHIHHIIIIHHEEHI

IIHIIHHHIHIIIIIIIHIHHIIIIIIHIIIIIIIIHHHHHIIIIIHIHHIIIHIHHFHHIIHIIII

HCIIIIHDDD@D  NH:i:1  HI:i:1  AS:i:198        nM:i:0 

SRR3222409.2149741      163     1       3199933 255     101M    =    

3200069 237 AACTTACTTAACTGACCAAAAAAACTATGGTACTGCAGTATAGCAAATACTCCAC

ACACTGTGCTTTGAGCTAGAGCACTTGGAGTCACTGCCCAGGGCAG ABDDDHHIIIIIIIIIIIII

IIHHIIIIIIIIIIIIIIIIIIIIIIII<<FHIHGHIIIIGIHEHIIIIIGIIIIIIIIIIIIIIHI

IIIIHIIIIHIIIH        NH:i:1  HI:i:1  AS:i:200        nM:i:0

 Can you identify what some of these columns are? SAM format description is
available here (https://samtools.github.io/hts-specs/).

The Log.final.out  file gives a summary of the mapping run. This file is used by
MultiQC later to collect mapping statistics.

 Inspect one of the mapping log files to identify the number of uniquely mapped reads
and multi-mapped reads.

+

OUTPUT

https://samtools.github.io/hts-specs/


                                 Started job on |       Sep 08 14:0

3:46 

                             Started mapping on |       Sep 08 14:0

7:01 

                                    Finished on |       Sep 08 14:0

9:05 

       Mapping speed, Million of reads per hour |       154.78 

 

                          Number of input reads |       5331353 

                      Average input read length |       201 

                                    UNIQUE READS: 

                   Uniquely mapped reads number |       4532497 

                        Uniquely mapped reads % |       85.02% 

                          Average mapped length |       199.72 

                       Number of splices: Total |       2628072 

            Number of splices: Annotated (sjdb) |       2608823 

                       Number of splices: GT/AG |       2604679 

                       Number of splices: GC/AG |       15762 

                       Number of splices: AT/AC |       2422 

               Number of splices: Non-canonical |       5209 

                      Mismatch rate per base, % |       0.18% 

                         Deletion rate per base |       0.02% 

                        Deletion average length |       1.49 

                        Insertion rate per base |       0.01% 

                       Insertion average length |       1.37 

                             MULTI-MAPPING READS: 

        Number of reads mapped to multiple loci |       493795 

             % of reads mapped to multiple loci |       9.26% 

        Number of reads mapped to too many loci |       8241 

             % of reads mapped to too many loci |       0.15% 

                                  UNMAPPED READS: 

       % of reads unmapped: too many mismatches |       0.00% 

                 % of reads unmapped: too short |       5.51% 

                     % of reads unmapped: other |       0.06% 

                                  CHIMERIC READS: 

                       Number of chimeric reads |       0 

                            % of chimeric reads |       0.00%

The BAM file names can be simplified by renaming them. This command renames all
BAM files.

SH

rename "Aligned.sortedByCoord.out" "" *.bam



Next, we need to index these BAM files. Indexing creates .bam.bai  files which are
required by many downstream programs to quickly and e�iciently locate reads
anywhere in the BAM file.

 Index all BAM files.

+

Finally, we should have .bai  index files for all BAM files.

SH

ls -l

OUTPUT

-rw-rw-r-- 1 user g201XXXX 628M Sep  6 00:54 SRR3222409.bam 

-rw-rw-r-- 1 user g201XXXX 1.8M Sep  6 01:22 SRR3222409.bam.bai

 If you are running short of time or unable to run the mapping, you can copy over
results for all samples that have been prepared for you before class. They are available
at this location: /sw/courses/ngsintro/rnaseq/main/3_mapping/ .

SH

cp -r /sw/courses/ngsintro/rnaseq/main/3_mapping/* /proj/g2019007/n

obackup/[user]/rnaseq/3_mapping/

 

2.4 QualiMap
Post-alignment QC using QualiMap

Some important quality aspects, such as saturation of sequencing depth, read
distribution between di�erent genomic features or coverage uniformity along
transcripts, can be measured only a�er mapping reads to the reference genome. One of
the tools to perform this post-alignment quality control is QualiMap. QualiMap examines
sequencing alignment data in SAM/BAM files according to the features of the mapped
reads and provides an overall view of the data that helps to the detect biases in the
sequencing and/or mapping of the data and eases decision-making for further analysis.

 Read through QualiMap (http://qualimap.bioinfo.cipf.es/doc_html/intro.html)
documentation and see if you can figure it out how to run it to assess post-alignment
quality on the RNA-seq mapped samples. Here is the RNA-Seq specific tool explanation

http://qualimap.bioinfo.cipf.es/doc_html/intro.html
http://qualimap.bioinfo.cipf.es/doc_html/analysis.html#rnaseqqc


(http://qualimap.bioinfo.cipf.es/doc_html/analysis.html#rnaseqqc). The tool is already
installed on Uppmax as a module.

 Load the QualiMap module version 2.2.1 and create a bash script named
qualimap.sh  in your scripts  directory.

Add the following script to it.

SH

#!/bin/bash 

 

# load modules 

module load bioinfo-tools 

module load QualiMap/2.2.1 

 

prefix="${1##*/}" 

prefix="${1/.bam/}" 

 

export DISPLAY="" 

 

qualimap rnaseq -pe \ 

-bam $1 \ 

-gtf "../reference/Mus_musculus.GRCm38.79.gtf" \ 

-outdir "../4_qualimap/${prefix}/" \ 

-outfile "$prefix" \ 

-outformat "HTML" \ 

--java-mem-size=64G >& "${prefix}-qualimap.log"

The line prefix="${1/.bam/}"  is used to remove .bam  from the input filename and
create a prefix which will be used to label output. The export DISPLAY=""  is used to
run JAVA application in headless mode or else throws an error about X11 display. The
last part >& "${prefix}-qualimap.log"  saves the standard-out as a log file.

 create a new bash loop script named qualimap_batch.sh  with a bash loop to run
the qualimap script over all BAM files. The loop should look like below. Alternatively, you
can also simply run the script below directly on the command line.

+

Run the loop script qualimap_batch.sh  in the directory 4_qualimap .

+

http://qualimap.bioinfo.cipf.es/doc_html/analysis.html#rnaseqqc


Qualimap should have created a directory for every BAM file. Inside every directory, you
should see:

SH

ls -l

OUTPUT

drwxrwxr-x 2 user g201XXXX 4.0K Sep 14 17:24 css 

drwxrwxr-x 2 user g201XXXX 4.0K Sep 14 17:24 images_qualimapReport 

-rw-rw-r-- 1 user g201XXXX  11K Sep 14 17:24 qualimapReport.html 

drwxrwxr-x 2 user g201XXXX 4.0K Sep 14 17:24 raw_data_qualimapRepor

t 

-rw-rw-r-- 1 user g201XXXX 1.2K Sep 14 17:24 rnaseq_qc_results.txt

 You can download the HTML files locally to your computer if you wish. If you do so,
note that you MUST also download the dependency files (ie; css folder and
images_qualimapReport folder), otherwise the HTML file may not render correctly.

 Inspect the HTML output file and try to make sense of it.

SH

firefox qualimapReport.html &

 If you are running out of time or were unable to run QualiMap, you can also copy pre-
run QualiMap output from this location:
/sw/courses/ngsintro/rnaseq/main/4_qualimap/ .

SH

cp -r /sw/courses/ngsintro/rnaseq/main/4_qualimap/* /proj/g2019007/

nobackup/[user]/rnaseq/4_qualimap/

 Check the QualiMap report for one sample and discuss if the sample is of good
quality. You only need to do this for one file now. We will do a comparison with all
samples when using the MultiQC tool.

 

2.5 featureCounts
Counting mapped reads using featureCounts

A�er ensuring mapping quality, we can move on to enumerating reads mapping to
genomic features of interest. Here we will use featureCounts, an ultrafast and accurate
read summarization program, that can count mapped reads for genomic features such



as genes, exons, promoter, gene bodies, genomic bins and chromosomal locations.

 Read featureCounts documentation (http://bioinf.wehi.edu.au/subread-
package/SubreadUsersGuide.pdf) and see if you can figure it out how to use paired-end
reads using an unstranded library to count fragments overlapping with exonic regions
and summarise over genes.

 Load the subread module version 1.5.2 on Uppmax. Create a bash script named
featurecounts.sh  in the directory scripts .

We could run featureCounts on each BAM file, produce a text output for each sample
and combine the output. But the easier way is to provide a list of all BAM files and
featureCounts will combine counts for all samples into one text file.

Below is the script that we will use:

+

In the above script, we indicate the path of the annotation file
( -a "../reference/Mus_musculus.GRCm38.79.gtf" ), specify the output file name
( -o "counts.txt" ), specify that that annotation file is in GTF format ( -F "GTF" ),
specify that reads are to be counted over exonic features ( -t "exon" ) and summarised
to the gene level ( -g "gene_id" ). We also specify that the reads are paired-end ( -p ),
the library is unstranded ( -s 0 ) and the number of threads to use ( -T 8 ).

Run the featurecounts bash script in the directory 5_dge . Use pwd  to check if you are
standing in the correct directory.

You should be standing here to run this:

/proj/g2019007/nobackup/[user]/rnaseq/5_dge

+

You should have two output files:

SH

ls -l

OUTPUT

-rw-rw-r-- 1 user g201XXXX 2.8M Sep 15 11:05 counts.txt 

-rw-rw-r-- 1 user g201XXXX  658 Sep 15 11:05 counts.txt.summary

 Inspect the files and try to make sense of them.

http://bioinf.wehi.edu.au/subread-package/SubreadUsersGuide.pdf


 If you are running out of time or were unable to run featureCounts, you can copy the
count table file counts.txt  and it’s summary counts.txt.summary  located here:
/sw/courses/ngsintro/rnaseq/main/5_dge/ .

+

 

2.6 MultiQC
Combined QC report using MultiQC

We will use the tool MultiQC to crawl through the output, log files etc from FastQC,
STAR, QualiMap and featureCounts to create a combined QC report.

Run MultiQC as shown below in the 6_multiqc  directory. You should be standing here
to run this:

/proj/g2019007/nobackup/[user]/rnaseq/6_multiqc

SH

module load bioinfo-tools 

module load MultiQC/1.6 

 

multiqc --interactive ../

The output should look like below:

SH

ls -l

OUTPUT

drwxrwsr-x 2 user g201XXXX 4.0K Sep  6 22:33 multiqc_data 

-rw-rw-r-- 1 user g201XXXX 1.3M Sep  6 22:33 multiqc_report.html

 Open the MultiQC HTML report using firefox  and/or transfer to your computer and
inspect the report. You can also download the file locally to your computer.

SH

firefox multiqc_report.html &

 



2.7 edgeR
Differential gene expression using edgeR

The easiest way to perform di�erential expression is to use one of the statistical
packages, within R environment, that were specifically designed for analyses of read
counts arising from RNA-seq, SAGE and similar technologies. Here, we will one of such
packages called edgeR. Learning R is beyond the scope of this course so we prepared
basic ready to run R scripts to find DE genes between conditions KO and Wt.

Move to the 5_dge  directory and load R modules for use.

SH

module load R/3.5.2 

module load R_packages/3.5.2

Use pwd  to check if you are standing in the correct directory. Copy the following files to
the 5_dge  directory.

/sw/courses/ngsintro/rnaseq/main/5_dge/annotations.txt

/sw/courses/ngsintro/rnaseq/main/5_dge/dge.R

Make sure you have the counts.txt  file from featureCounts. If not, you can copy this
file too.

/sw/courses/ngsintro/rnaseq/main/5_dge/counts.txt

SH

cp /sw/courses/ngsintro/rnaseq/main/5_dge/annotations.txt . 

cp /sw/courses/ngsintro/rnaseq/main/5_dge/dge.R . 

cp /sw/courses/ngsintro/rnaseq/main/5_dge/counts.txt .

Now, run the R script from the schell in 5_dge  directory.

SH

Rscript dge.R

This should have produced the following output files:

SH

ls -l

OUTPUT



-rw-rw-r-- 1 user g201XXXX 8.9M Nov 29 16:31 dge_data.RData 

-rw-rw-r-- 1 user g201XXXX 2.6M Nov 29 16:31 dge_results.txt

 Copy the results text file ( dge_results.txt ) to your computer and inspect the
results. What are the columns? How many di�erentially expressed genes are present at
an FDR cuto� of 0.05? How many genes are upregulated and how many are down-
regulated? How does this change if we set a fold-change cut-o� of 1?

 Open in a spreadsheet editor like Microso� Excel or LibreO�ice Calc.

 If you do not have the results or were unable to run the DGE step, you can copy these
two here which will be required for functional annotation (optional).

SH

cp /sw/courses/ngsintro/rnaseq/main/5_dge/dge_results.txt . 

cp /sw/courses/ngsintro/rnaseq/main/5_dge/dge_data.Rdata .

 

3 Bonus exercises

 These exercises are completely optional and to be run only if you have time and if
it interests you.

Markers:    Run locally    Run on Uppmax

3.1 Functional annotation
In this part of the exercise we will address the question which biological processes are
a�ected in the experiment; in other words we will functionally annotate the results of
the analysis of di�erential gene expression (performed in the main part of the exercise).
We will use Gene Ontology (GO) and Reactome databases.

When performing this type of analysis, one has to keep in mind that the analysis is only
as accurate as the annotation available for your organism. So, if working with non-model
organisms which do have experimentally-validated annotations (computationally
inferred), the results may not be fully reflecting the actual situation.

There are many methods to approach the question as to which biological processes and
pathways are over-represented amongst the di�erentially expressed genes, compared to
all the genes included in the DE analysis. They use several types of statistical tests
(e.g. hypergeometric test, Fisher’s exact test etc.), and many have been developed with



microarray data in mind. Not all of these methods are appropriate for RNA-seq data,
which as you remember from the lecture, exhibit length bias in power of detection of
di�erentially expressed genes (i.e. longer genes, which tend to gather more reads, are
more likely to be detected as differentially expressed than shorter genes, solely
because of the length).

We will use the R / Bioconductor package goseq, specifically designed to work with RNA-
seq data. This package provides methods for performing Gene Ontology and pathway
analysis of RNA-seq data, taking length bias into account.

In this part, we will use the same data as in the main workflow. The starting point of the
exercise is the file with results of the di�erential expression produced in the main part of
the exercise.

Running functional annotation is typically not computationally heavy and it may be
easier to run it on your local computer. Therefore this module can be performed on
Uppmax or on your local computer. If you choose to run locally on your computer, you
need have R statistical programming language (https://www.r-project.org/) installed. An
optional graphical interface to R such as RStudio
(https://www.rstudio.com/products/rstudio/) is also recommended.

3.1.1 Preparation

 Local

Install required R packages by running the script below in R.

R

source("http://bioconductor.org/biocLite.R") 

biocLite(c("goseq","GO.db","reactome.db","org.Mm.eg.db"))

Copy this directory /sw/courses/ngsintro/rnaseq/bonus/funannot  to your
computer by running the below command in your LOCAL terminal and NOT on
Uppmax.

SH

scp -r user@rackham.uppmax.uu.se:/sw/courses/ngsintro/rnaseq/bon

us/funannot ./

Alternatively, all users can use an SFTP browser like Filezilla (https://filezilla-
project.org/) or Cyberduck (https://cyberduck.io/) for a GUI interface. Windows users
can also use the MobaXterm SFTP file browser to drag and drop.

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/
https://filezilla-project.org/
https://cyberduck.io/


 Uppmax

Copy this directory /sw/courses/ngsintro/rnaseq/bonus/funannot  and all it’s
contents to your rnaseq  project directory.

SH

cp -r /sw/courses/ngsintro/rnaseq/bonus/funannot /proj/g2019007/

nobackup/[user]/rnaseq/

3.1.2 Workflow

 Local

Set the working directory to funannot  in R.

R

setwd("path/funannot")

Make sure you have the files: annot , annotate_de_results.R  and data  in the
funannot  directory using the R command list.files() .

Run this from within R.

R

source("annotate_de_results.R")

 Uppmax

Load R module and R packages

SH

module load R/3.5.2 

module load R_packages/3.5.2

Change to the funannot  directory in your rnaseq  directory.

SH

cd funannot

The funannot  directory should look like this:

SH



ls -l

OUTPUT

drwxrwsr-x 2 user g201XXXX 4.0K Sep  6 20:13 annot 

-rw-rw-r-- 1 user g201XXXX 4.7K Sep  6 20:13 annotate_de_result

s.R 

drwxrwsr-x 4 user g201XXXX 4.0K Sep  6 20:13 data

Run the functional annotation script from the linux terminal.

SH

Rscript annotate_de_results.R

Now your funannot  directory should look like this:

SH

ls -l

SH

drwxrwsr-x 2 user g201XXXX 4.0K Sep  6 20:13 annot 

-rw-rw-r-- 1 user g201XXXX 4.7K Sep  6 20:13 annotate_de_results.R 

drwxrwsr-x 4 user g201XXXX 4.0K Sep  6 20:13 data 

drwxrwsr-x 2 user g201XXXX 4.0K Sep  6 20:18 GO_react_results 

-rw-rw-r-- 1 user g201XXXX  52K Sep  6 20:18 Rplots.pdf

The results are saved in the directory GO_react_results . The plot Rplots.pdf  can
be opened in the firefox browser as such firefox Rplots.pdf .

3.1.3 Interpretation
The results are saved as tables in the directory GO_react_results . There are four
tables: GO terms for up-regulated genes, GO terms for down-regulated genes and
similarily, Reactome pathways for up-regulated genes and Reactome pathways for
down-regulated genes.

 Take a quick look at some of these files.

SH

head GO_term_genes_dn.txt

The columns of the results tables are:



OUTPUT

# go 

category over_represented_pvalue under_represented_pvalue numDEInCa

t numInCat term ontology 

# reactome 

category over_represented_pvalue under_represented_pvalue numDEInCa

t numInCat path_name

You can view the tables in a text editor ( nano , gedit  etc), and try to find GO terms and
pathways relevant to the experiment using a word search functionality. You could
download these files to your computer and import them into a spreadsheet program
like MS Excel or LibreO�ice Calc.

 Try to use grep  to find a match using a keyword, say phosphorylation.

SH

cat reactome_pway_genes_up.txt | grep "phosphorylation"

 Have a look at the GO terms and see if you think the functional annotation reflects
the biology of the experiments we have just analysed?

3.2 IGV browser
Data visualisation is important to be able to clearly convey results, but can also be very
helpful as tool for identifying issues and note-worthy patterns in the data. In this part
you will use the BAM files you created earlier in the RNA-seq lab and use IGV
(http://so�ware.broadinstitute.org/so�ware/igv/) (Integrated Genomic Viewer) to
visualize the mapped reads and genome annotations. In addition we will produce high
quality plots of both the mapped read data and the results from di�erential gene
expression.

If you are already familiar with IGV you can load the mouse genome and at least one
BAM file from each of the treatments that you created earlier. The functionality of IGV is
the same as if you look at genomic data, but there are a few of the features that are
more interesting to use for RNA-seq data.

Integrated genomics viewer from Broad Institute is a nice graphical interface to view
bam files and genome annotations. It also has tools to export data and some
functionality to look at splicing patterns in RNA-seq data sets. Even though it allows for
some basic types of analysis it should be used more as a nice way to look at your
mapped data. Looking at data in this way might seem like a daunting approach as you
can not check more than a few regions, but in in many cases it can reveal mapping
patterns that are hard to catch with just summary statistics.

http://software.broadinstitute.org/software/igv/


For this tutorial you can chose to run IGV directly on your own computer  or on
Uppmax . If you chose to run it on your own computer you will have to download
some of the BAM files (and the corresponding index files) from Uppmax. If you have not
yet installed IGV you also have to download
(http://so�ware.broadinstitute.org/so�ware/igv/download) the program.

 Local

Copy two BAM files (one from each experimental group, for example; SRR3222409
and SRR3222412) and the associated index ( .bam.bai ) files to your computer by
running the below command in a LOCAL terminal and NOT on Uppmax.

SH

scp user@rackham.uppmax.uu.se:/proj/g2019007/nobackup/rnaseq/[us

er]/3_mapping/SRR3222409.bam ./ 

scp user@rackham.uppmax.uu.se:/proj/g2019007/nobackup/rnaseq/[us

er]/3_mapping/SRR3222409.bam.bai ./ 

scp user@rackham.uppmax.uu.se:/proj/g2019007/nobackup/rnaseq/[us

er]/3_mapping/SRR3222412.bam ./ 

scp user@rackham.uppmax.uu.se:/proj/g2019007/nobackup/rnaseq/[us

er]/3_mapping/SRR3222412.bam.bai ./

Alternatively, all users can use an SFTP browser like Filezilla (https://filezilla-
project.org/) or Cyberduck (https://cyberduck.io/) for a GUI interface. Windows users
can also use the MobaXterm SFTP file browser to drag and drop.

 Uppmax

For Linux and Mac users, Log in to Uppmax in a way so that the generated graphics
are exported via the network to your screen. This will allow any graphical interface
that you start on your compute node to be exported to your computer. However, as
the graphics are exported over the network, it can be fairly slow in redrawing
windows and the experience can be fairly poor.

Login in to Uppmax with X-forwarding enabled:

SH

ssh -Y username@rackham.uppmax.uu.se 

ssh -Y computenode

http://software.broadinstitute.org/software/igv/download
https://filezilla-project.org/
https://cyberduck.io/


An alternative method is to login through Rackham-GUI (https://rackham-
gui.uppmax.uu.se/main/). Once you log into this interface you will have a linux
desktop interface in a browser window. This interface is running on the login node,
so if you want to do any heavy li�ing you need to login to your reserved compute
node also here. This is done by opening a terminal in the running linux environment
and log on to your compute node as before. NB! If you have no active reservation you
have to do that first.

Load necessary modules and start IGV

SH

module load bioinfo-tools 

module load IGV/2.4.2 

igv-core

This should start the IGV so that it is visible on your screen. If not please try to
reconnect to Uppmax or consider running IGV locally as that is o�en the fastest and
most convenient solution.

Once we have the program running, you select the genome that you would like to load.
As seen in the image below. Choose Mouse mm10 .

Note that if you are working with a genome that are not part of the available genomes in
IGV, one can create genome files from within IGV. Please check the manual of IGV for
more information on that.

https://rackham-gui.uppmax.uu.se/main/


To open your BAM files, go to File > Load from file...  and select your BAM file
and make sure that you have a .bai  index for that BAM file in the same folder. You can
repeat this and open multiple BAM files in the same window, which makes it easy to
compare samples. For every file you open a number of panels are opened that visualize
the data in di�erent ways. The first panel named Coverage summarises the coverage of
base-pairs in the window you have zoomed to. The second that ends with the name
Junctions, show how reads were spliced to map, eg. reads that stretch over multiple
exons are split and mapped one part in one exon and the next in another exon. The third
panel shows the reads as they are mapped to the genome. If one right click with the
mouse on the read panel there many options to group and color reads.

To see actual reads you have to zoom in until the reads are drawn on screen. If you have
a gene of interest you can also use the search box to directly go to that gene.

If you for example search for the gene Mocs2, you should see a decent amount of reads
mapping to this region. For more detailed information on the splice reads you can
instead of just looking at the splice panel right click on the read panel and select
Sashimi plots. This will open a new window showing in an easy readable fashion how
reads are spliced in mapping and you will also be able to see that there are di�erences
in between what locations reads are spliced. This hence gives some indication on the
isoform usage of the gene.

To try some of the features available in IGV, you can try to address the following
questions:

 Are the reads you mapped from a stranded or unstranded library?

 Pick a gene from the top list of most significant genes from the DE analysis and search
for it using the search box in IGV. Would you say that the pattern you see here confirms
the gene as di�erentially expressed between treatments? For example; Klk10.

 One can visualize all genes in a given pathway using the gene list option under
Regions in the menu. Would you agree with what they state in the paper about certain
pathways being down-regulated. If you need hints for how to proceed, see Gene List
tutorial (http://so�ware.broadinstitute.org/so�ware/igv/gene_list_view) at Broad.

3.3 RNA-Seq plots
Creating high quality plots of RNA-seq analysis are most easily done using R. Depending
on your proficiency in reading R code and using R, you can in this section either just call
scripts from the command lines with a set of arguments or you can open the R script in a
text editor, and run the code step by step from an interactive R session.

 For this tutorial, the R scripts are to be run on Uppmax .

http://software.broadinstitute.org/software/igv/gene_list_view


Copy the R script files from the following directory:
/sw/courses/ngsintro/rnaseq/bonus/visual/  to your 5_dge  directory.

SH

cp /sw/courses/ngsintro/rnaseq/bonus/visual/*.R /proj/g2019007/noba

ckup/[user]/rnaseq/5_dge/

You should have the following files:

SH

ls -l

OUTPUT

-rw-rw-r-- 1 user g201XXXX 2.0K Sep 20  2016 gene.R 

-rw-rw-r-- 1 user g201XXXX  842 Sep 22  2016 heatmap.R 

-rw-rw-r-- 1 user g201XXXX  282 Sep 22  2016 ma.R 

-rw-rw-r-- 1 user g201XXXX  340 Sep 22  2016 mds.R 

-rw-rw-r-- 1 user g201XXXX  669 Sep 22  2016 volcano.R

3.3.1 MDS plot
A popular way to visualise general patterns of gene expression in your data is to produce
either PCA (Principal Component Analysis) or MDS (Multi Dimensional Scaling) plots.
These methods aim at summarizing the main patterns of expression in the data and
display them on a two-dimensional space and still retain as much information as
possible. To properly evaluate these kind of results is non-trivial, but in the case of RNA-
seq data we o�en use them to get an idea of the di�erence in expression between
treatments and also to get an idea of the similarity among replicates. If the plots shows
clear clusters of samples that corresponds to treatment it is an indication of treatment
actually having an e�ect on gene expression. If the distance between replicates from a
single treatment is very large it suggests large variance within the treatment, something
that will influence the detection of di�erentially expressed genes between treatments.

Run the mds.R  script as this.

SH

Rscript mds.R

This generates a file named MDS.png in the 5_dge  folder. To view it, use
eog MDS.png &  or copy it to your local disk.



 Based on these results are you surprised that your DE analysis detected a fairly large
number of significant genes?

3.3.2 MA plot
An MA-plot plots the mean expression and estimated log-fold-change for all genes in an
analysis.

Run the ma.R  script in the 5_dge  directory.

SH

Rscript ma.R

This generates a file named MA.png in the 5_dge  folder. To view it, use eog MA.png &
or copy it to your local disk.



 What do you think the red dots represent?

3.3.3 Volcano plot
A related type of figure will instead plot fold change (on log2 scale) on the x-axis and -
log10 p-value on the y-axis. Scaling like this means that genes with lowest p-value will
be found at the top of the plot. In this example we will highlight (in red) the genes that
are significant at the 0.05 level a�er correction for multiple testing and that have an
estimated fold change larger than 2.

Run the script named volcano.R  in the 5_dge  directory.

SH

Rscript volcano.R

This generates a file named Volcano.png in the 5_dge  folder. To view it, use
eog Volcano.png &  or copy it to your local disk.



 Anything noteworthy about the patterns in the plot?

3.3.4 Heatmap
Another popular plots for genome-wide expression patterns is heatmaps for sets of
genes. If you run the script called heatmap.R  from the folder 5_dge , it will extract the
50 genes that have the lowest p-value in the experiment and create a heatmap from
these. In addition to colorcoding the expression levels over samples for the genes it also
clusters the samples and genes based on inferred distance between them.

Run the script named heatmap.R  in the 5_dge  directory.

SH

Rscript heatmap.R

This generates a file named Heatmap.png in the 5_dge  folder. To view it, use
eog Heatmap.png &  or copy it to your local disk.



 Compare this plot to a similar plot in the paper behind the data.



Most of these plots can be done with a limited set of code. In many cases these standard
plots can be created with two to three lines of code as the packages that has been
written to handle RNA-seq expression data o�en contains easy to use functions for
generating them. But, creating publication-quality custom plots can take a lot more
tweaking.

3.4 De-novo transcriptome assembly

 For this tutorial, the code is to be run on Uppmax .

Trinity is one of several de-novo transcriptome assemblers. By e�iciently constructing
and analyzing sets of de Bruijn graphs, Trinity reconstructs a large fraction of transcripts,
including alternatively spliced isoforms and transcripts from recently duplicated genes.
This approach provides a unified solution for transcriptome reconstruction in any
sample, especially in the absence of a reference genome.

Grabherr MG, Haas BW, Yassour M et al. (2011) Full-length transcriptome assembly from
RNA-Seq data without a reference genome. Nature Biotechnology. 2011 May
15;29(7):644-52 (https://www.nature.com/articles/nbt.1883).

3.4.1 Getting started
Trinity combines three independent so�ware modules: Inchworm, Chrysalis, and
Butterfly, applied sequentially to process large volumes of RNA-Seq reads. Trinity
partitions the sequence data into many individual de Bruijn graphs, each representing
the transcriptional complexity at at a given gene or locus, and then processes each
graph independently to extract full-length splicing isoforms and to tease apart
transcripts derived from paralogous genes.

Briefly, the process works like so:

Inchworm assembles the RNA-Seq data into the unique sequences of transcripts,
o�en generating full-length transcripts for a dominant isoform, but then reports
just the unique portions of alternatively spliced transcripts.

Chrysalis clusters the Inchworm contigs into clusters and constructs complete de
Bruijn graphs for each cluster. Each cluster represents the full transcriptional
complexity for a given gene (or sets of genes that share sequences in common).
Chrysalis then partitions the full read set among these disjoint graphs.

Butterfly then processes the individual graphs in parallel, tracing the paths that
reads and pairs of reads take within the graph, ultimately reporting full-length
transcripts for alternatively spliced isoforms, and teasing apart transcripts that
corresponds to paralogous genes.

https://www.nature.com/articles/nbt.1883


A basic recommendation is to have 1G of RAM per 1M pairs of Illumina reads in order to
run the Inchworm and Chrysalis steps. Simpler transcriptomes require less memory than
complex transcriptomes. Butterfly requires less memory and can also be spread across
multiple processors.

The entire process can require ~1 hour per million pairs of reads in the current
implementation. There are various things that can be done to modify performance.
Please review the guidelines in the o�icial Trinity documentation for more advice on this
topic. Typical Trinity usage is as follows:

SH

Trinity \ 

--seqType (fq for fastq or fa for fast) \ 

--left ~/path/to/reads_1.fq \ 

--right ~/path/to/reads_2.fq (or --single for single reads) \ 

--CPU 8 \ 

--output ~/path/to/output_dir

3.4.2 Running Trinity
In the following exercise, you will have chance to run trinity on a data set that is suitable
to be finished within a short lab session. Note that for many larger data sets and/or
complex transcriptomes running times and memory requirements might be much larger
than in this example. The actual commands to run trinity is very easy and the manual at
Trinity Wiki (https://github.com/trinityrnaseq/trinityrnaseq/wiki) answers most questions
related to running the program. The major challenge with running de-novo assembly
projects is not to get the programs to run, but rather to evaluate the results a�er the
run. In many cases, a very large number of potential transcripts are generated and o�en
try to use sequence properties to filter the initial data. In addition, one o�en tries to
compare the obtained sequences to closely related species to try to predict open
reading frames to get a feeling for how the experiment has turned out.

In order to get a feel for this, we will assemble two data sets in the exercise and use
simple unix tools to calculate basics stats on the assembled sequences. The key to
get going with these types of analysis is to realize that one does not need a
specialised program to collect basic summary statistics from text files (note that
fasta files are simple text files of a specified structure).

Create a directory named assembly  in your rnaseq  directory. Then copy the fasta files
from this location /sw/courses/ngsintro/rnaseq/bonus/assembly .

SH

https://github.com/trinityrnaseq/trinityrnaseq/wiki


cd rnaseq 

mkdir assembly 

cd assembly 

cp /sw/courses/ngsintro/rnaseq/bonus/assembly/*.fasta /proj/g201900

7/nobackup/[user]/rnaseq/assembly/

Have a look at the example data used in this exercise. The data is obtained from mouse
dendritic cells (mouse_le�.fasta and mouse_right.fasta) and a whitefly
(whitefly_both.fasta). The mouse data is strand-specific (RF) and the whitefly data is
unstranded. For strand-specific data, specify the library type. There are four library types:

Paired reads: RF: first read (/1) of fragment pair is sequenced as anti-sense (reverse(R)),
and second read (/2) is in the sense strand (forward(F)); typical of the dUTP/UDG
sequencing method. FR: first read (/1) of fragment pair is sequenced as sense (forward),
and second read (/2) is in the antisense strand (reverse)

Unpaired (single) reads: F: the single read is in the sense (forward) orientation R: the
single read is in the antisense (reverse) orientation

By setting the -SS_lib_type  parameter to one of the above, you are indicating that
the reads are strand-specific. By default, reads are treated as not strand-specific.

 Check the manual (https://github.com/trinityrnaseq/trinityrnaseq/wiki) of Trinity again
and try to figure out what parameters and settings that are needed to run trinity on the
test data. Remember to try and use all 8 cores. Create a bash script named trinity.sh
in the scripts  directory.

Note that trinity version 2.8.2 is available as a module on Uppmax and needs several
other modules to work, namely, samtools 1.6, jellyfish 2.2.6 and Salmon 0.9.1.

We have the script below:

SH

https://github.com/trinityrnaseq/trinityrnaseq/wiki


#!/bin/bash 

 

# load modules 

module load bioinfo-tools 

module load trinity/2.8.2 

module load samtools/1.6 

module load jellyfish/2.2.6 

module load Salmon/0.9.1 

 

Trinity \ 

--seqType fa \ 

--left "mouse_left.fasta" \ 

--right "mouse_right.fasta" \ 

--SS_lib_type RF \ 

--CPU 8 \ 

--max_memory 50G \ 

--output trinity_output

 It is recommended to use full paths for sequence files with Trinity. Depending on
version of Trinity used --max_memory  is sometimes given by the command --JM .

Run the command in the assembly  directory.

SH

bash ../scripts/trinity.sh

3.4.3 Assess the data
Explore the Trinity output file Trinity.fasta  located in the trinity_output
directory (or output directory you specified).

Transcripts are grouped as follows:

components: the set of all sequences that share at least one k-mer (including
paralogs)
contigs: transcripts that share a number of k-mers (the set of isoforms of a gene)
sequences: (isoforms and allelic variation)

 Count the number of sequences in the Trinity.fasta  file ( Try using the unix
commands grep  and wc )

SH

cat Trinity.fasta | grep ">" | wc -l



 What is grep  doing? What is the -l  switch doing?

Get basic information about the assembly with TrinityStats.

SH

/sw/apps/bioinfo/trinity/2.8.2/rackham/util/TrinityStats.pl Trinit

y.fasta

 How many “genes” did Trinity assemble? How many transcripts? How large is the
assembly? (Number of bases) What is N50?

 Filter out sequences shorter than 1000 nucleotides. ( Do a web search for
appropriate tools. Someone else must have had the exact same problem. Count the
number of sequences again)

+

 What is the fasta_formatter  step doing?

 Align some sequences to a protein database and assess full-lengthness using NCBI
blast database. Also try to see if you can find instances of spliced genes in your data by
using the UCSC genome browser (do a web search to find it)

Select BLAT from the menu at the top of the page and paste in a mouse transcript
sequence from Trinity.fasta .
Select the mouse/mm10 genome and click Submit.
Click on the top scoring hit.

Examine the alignments by clicking Details on the resulting page.

Your sequences will be displayed in the browser.
Enable the mouse annotations (ENSEMBL gene build, UCSC genes, human proteins
etc.).

Optional

 Do a new transcriptome assembly of whitefly RNA-Seq data using above code as
help.

 

4 sbatch



 You are not required to run anything practically in this section. This is just to read
and understand.

We have throughout this tutorial written bash scripts and run them from the terminal
directly. Remember that we are not running on the login node. We have pre-allocated
resources, then logged in to a compute node to run tasks. This is called working
interactively on Uppmax. This is fine for tutorials and testing purposes. But, if you were
to actually work on Uppmax, you would follow a slightly di�erent approach.

The standard workflow on Uppmax is to login to the login node and then submit tasks
as jobs to something called a Slurm queue. We haven’t used this option, because it
involves waiting for an unpredictable amount of time for your submitted job to execute.
In this section, we will take a look at how to modify a standard bash script to work with
Slurm job submission.

This is how our standard bash script for mapping looks like:

SH

#!/bin/bash 

 

# load modules 

module load bioinfo-tools 

module load star/2.7.0e 

 

# create output file name 

prefix="${1/_*/}" 

 

star \ 

--runMode alignReads \ 

--genomeDir "../reference/mouse" \ 

--runThreadN 8 \ 

--readFilesCommand zcat \ 

--readFilesIn $1 $2 \ 

--sjdbGTFfile "../reference/Mus_musculus.GRCm38.79.gtf" \ 

--outFileNamePrefix "$prefix" \ 

--outSAMtype BAM SortedByCoordinate

We add SBATCH  commands to the above script. The new script looks like this:

SH



#!/bin/bash 

 

#SBATCH -A snic2019-8-3 

#SBATCH -p core 

#SBATCH -n 8 

#SBATCH -t 2:00:00 

#SBATCH -J star-align 

 

# load modules 

module load bioinfo-tools 

module load star/2.7.0e 

 

# create output file name 

prefix="${1/_*/}" 

 

star \ 

--runMode alignReads \ 

--genomeDir "../reference/mouse" \ 

--runThreadN 8 \ 

--readFilesCommand zcat \ 

--readFilesIn $1 $2 \ 

--sjdbGTFfile "../reference/Mus_musculus.GRCm38.79.gtf" \ 

--outFileNamePrefix "$prefix" \ 

--outSAMtype BAM SortedByCoordinate

The SBATCH  commands in the above script is specifying the account name to use
resources from, the required number of cores, the time required for the job and a job
name.

 If you run this as a normal bash script like this ./star_align.sh ... , the SBATCH
comments have no e�ect (they are treated as comments) and the contents of the script
will immediately start executing. But if you run this as script as
sbatch ./star_align.sh ... , the script is submitted as a job to the Uppmax Slurm

queue. In this case, the SBATCH  lines are interpreted and used by Slurm. At some point,
your submitted job will reach the top of the queue and then the script will start to be
executed.

You can check your jobs in the queue by running the following command.

SH

jobinfo -u user

And this gives a list like this:



OUTPUT

CLUSTER: rackham 

Running jobs: 

   JOBID PARTITION                      NAME     USER        ACCOUN

T ST          START_TIME  TIME_LEFT  NODES CPUS NODELIST(REASON) 

 5006225      core                    (null) user       g201XXXX  R 

2018-09-12T14:00:03      44:31      1    1 r169 

 5006229      core                    (null) user       g201XXXX  R 

2018-09-12T14:00:03      44:31      1    1 r169 

 5006352      core                    (null) user       g201XXXX  R 

2018-09-12T14:04:14      48:42      1    1 r178 

 5006355      core                    (null) user       g201XXXX  R 

2018-09-12T14:05:17      49:45      1    1 r169 

 5006356      core                    (null) user       g201XXXX  R 

2018-09-12T14:06:08      50:36      1    5 r179

If the job is pending, then you will see PD  in the ST  column. If your job is running, you
should see R . Once your job starts running, you will see a file named slurm-XXXX.out
in the directory in which you submitted the job. This is the standard-out from that job.
ie; everything that you would normally see printed to your screen when running locally,
is printed to this file when running as a job. Once the job is over, one would inspect the
slurm output file.

SH

head slurm-XXXX.out 

tail slurm-XXXX.out 

cat slurm-XXXX.out

 

5 Conclusion
We hope that you enjoyed getting your hands wet working on some real-ish data. In this
tutorial, we have covered the most important data processing steps that may be enough
when the libraries are good. If not, there are plenty of troubleshooting procedures to try
before discarding the data. And once the count table are in place, the biostatistics and
data mining begins. There are no well-defined solutions here, all depends on the
experiment and questions to be asked, but we strongly advise learning R. Not only to
use the specifically designed statistical packages to analyze NGS count data, but also to
be able to handle the data and results as well as to generate high-quality plots. There
are many available tools and well-written tutorials with examples to learn from.



For those interested in RNA-Seq analysis, SciLifeLab o�ers a more advanced course in
RNA-Seq analysis each semester. For more information, see Courses
(https://www.scilifelab.se/education/courses%26training) o�ered by SciLifeLab.

This course material was built on content previously created by Thomas Kallman, Agata
Smialowska and Olga Dethlefsen.

6 Session info
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## R version 3.5.2 (2018-12-20) 

## Platform: x86_64-pc-linux-gnu (64-bit) 

## Running under: Ubuntu 18.04.2 LTS 

##  

## Matrix products: default 

## BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1 

## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1 

##  

## locale: 

##  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               

##  [3] LC_TIME=en_GB.UTF-8        LC_COLLATE=en_GB.UTF-8     

##  [5] LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8    

##  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  

##  [9] LC_ADDRESS=C               LC_TELEPHONE=C             

## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C        

##  

## attached base packages: 

## [1] stats     datasets  grDevices utils     graphics  methods   

base      

##  

## other attached packages: 

##  [1] kableExtra_1.1.0  dplyr_0.8.0.1     tidyr_0.8.3       

##  [4] stringr_1.4.0     captioner_2.2.3   bookdown_0.9      

##  [7] knitr_1.22        rsconnect_0.8.13  showtext_0.6      

## [10] showtextdb_2.0    sysfonts_0.8      ggplot2_3.1.1     

## [13] png_0.1-7         shinyAce_0.3.3    shinythemes_1.1.2 

## [16] shiny_1.3.2       

##  

## loaded via a namespace (and not attached): 

##  [1] tidyselect_0.2.5   xfun_0.6           purrr_0.3.2        

##  [4] reshape2_1.4.3     colorspace_1.4-1   viridisLite_0.3.0  

##  [7] htmltools_0.3.6    yaml_2.2.0         rlang_0.3.4        

## [10] later_0.8.0        pillar_1.3.1       glue_1.3.1         

## [13] withr_2.1.2        plyr_1.8.4         munsell_0.5.0      

## [16] gtable_0.3.0       rvest_0.3.3        evaluate_0.13      

## [19] labeling_0.3       httpuv_1.5.1       curl_3.3           

## [22] Rcpp_1.0.1         readr_1.3.1        xtable_1.8-3       

## [25] openssl_1.3        promises_1.0.1     scales_1.0.0       

## [28] BiocManager_1.30.4 webshot_0.5.1      jsonlite_1.6       

## [31] mime_0.6           hms_0.4.2          askpass_1.1        

## [34] digest_0.6.18      packrat_0.5.0      stringi_1.4.3      

## [37] grid_3.5.2         tools_3.5.2        bitops_1.0-6       

## [40] magrittr_1.5       lazyeval_0.2.2     RCurl_1.95-4.12    
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## [43] tibble_2.1.1       crayon_1.3.4       pkgconfig_2.0.2    

## [46] xml2_1.2.0         httr_1.4.0         assertthat_0.2.1   

## [49] rmarkdown_1.12     rstudioapi_0.10    R6_2.4.0           

## [52] compiler_3.5.2

Built on:  29-May-2019 at  15:12:55.
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