
Contents

NB SciLifeLab

- RNA Sequencing
- Workflow
- DGE Workflow
- ReadQC
- Mapping
- Alignment QC
- Quantification
- Normalisation
- Exploratory
- DGE
- Functional analyses
- Summary
- Help

RNA Sequencing

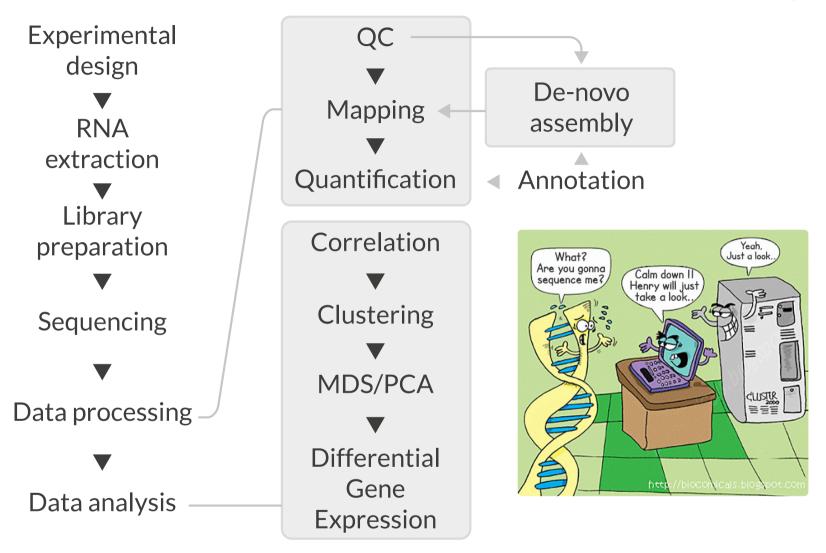
- The transcriptome is spatially and temporally dynamic
- Data comes from functional units (coding regions)
- Only a tiny fraction of the genome

How many do RNASeq?

How many of you have/will have RNASeq as a component in your research?

• Raise of hands

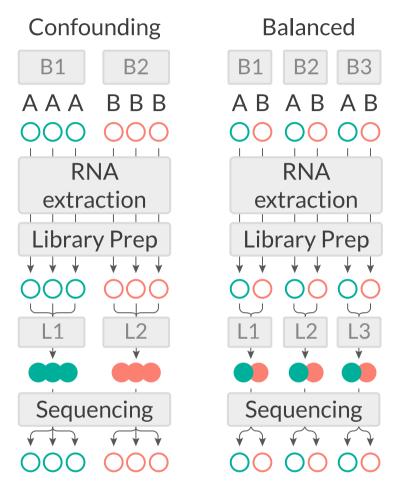
Menti.com


Applications

NB SciLifeLab

- Identify gene sequences in genomes
- Learn about gene function
- Differential gene expression
- Explore isoform and allelic expression
- Understand co-expression, pathways and networks
- Gene fusion
- RNA editing
- Phylogeny
- Gene discovery
- Other

Workflow



Experimental design

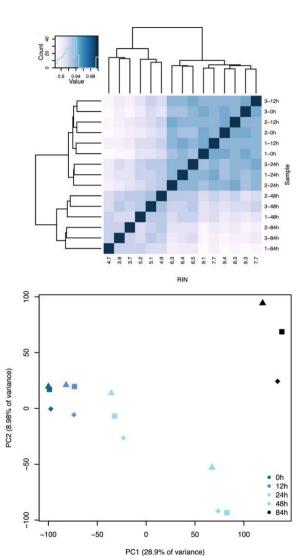
NB SciLifeLab

- Balanced design
- Technical replicates not necessary (Marioni et al., 2008)
- Biological replicates: 6 12 (Schurch et al., 2016)
- ENCODE consortium
- Previous publications
- Power analysis

RnaSeqSampleSize (Power analysis), Scotty (Power analysis with cost)

Busby, Michele A., et al. "Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression." Bioinformatics 29.5 (2013): 656-657

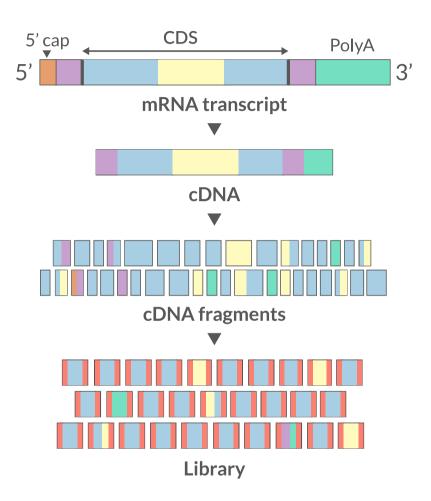
Marioni, John C., et al. "RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays." Genome research (2008)


Schurch, Nicholas J., et al. "How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?." Rna (2016)

Thao, Shilin, et al. "RnaSeqSampleSize: real data based sample size estimation for RNA sequencing." BMC bioinformatics 19.1 (2018): 191

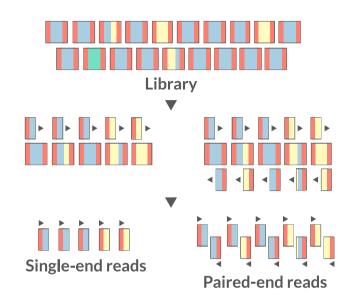
RNA extraction

- Sample processing and storage
- Total RNA/mRNA/small RNA
- DNAse treatment
- Quantity & quality
- RIN values (Strong effect)
- Batch effect
- Extraction method bias (GC bias)


[🔗] Romero, Irene Gallego, et al. "RNA-seq: impact of RNA degradation on transcript quantification." BMC biology 12.1 (2014): 42

[©] Kim, Young-Kook, *et al.* "Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells." Molecular cell 46.6 (2012): 893-89500481-9).

Library prep


- PolyA selection
- rRNA depletion
- Size selection
- PCR amplification (See section PCR duplicates)
- Stranded (directional) libraries
 - Accurately identify sense/antisense transcript
 - Resolve overlapping genes
- Exome capture
- Library normalisation
- Batch effect

Sequencing

- Sequencer (Illumina/PacBio)
- Read length
 - Greater than 50bp does not improve DGE
 - o Longer reads better for isoforms
- Pooling samples
- Sequencing depth (Coverage/Reads per sample)
- Single-end reads (Cheaper)
- Paired-end reads
 - Increased mappable reads
 - Increased power in assemblies
 - Better for structural variation and isoforms
 - Decreased false-positives for DGE

[•] Chhangawala, Sagar, et al. "The impact of read length on quantification of differentially expressed genes and splice junction detection." Genome biology 16.1 (2015): 131
• Corley, Susan M., et al. "Differentially expressed genes from RNA-Seq and functional enrichment results are affected by the choice of single-end versus paired-end reads and stranded versus non-stranded protocols." BMC genomics 18.1 (2017): 399

[•] Liu, Yuwen, Jie Zhou, and Kevin P. White. "RNA-seq differential expression studies: more sequence or more replication?." Bioinformatics 30.3 (2013): 301-304 • Comparison of PE and SE for RNA-Seq, SciLifeLab

Workflow • DGE

Reads

FastQ

FastQ

FastQ

Mapping

STAR

HiSat2

Quantification

featureCounts

[Kallisto/ Salmon]

Differential

gene expression

DESeq2/ edgeR/ Limma StringTie

Ballgown

Sleuth

11/50

De-Novo assembly

NB SciLifeLab

- When no reference genome available
- To identify novel genes/transcripts/isoforms
- Identify fusion genes
- Assemble transcriptome from short reads
- Access quality of assembly and refine
- Map reads back to assembled transcriptome

Trinity, SOAPdenovo-Trans, Oases, rnaSPAdes

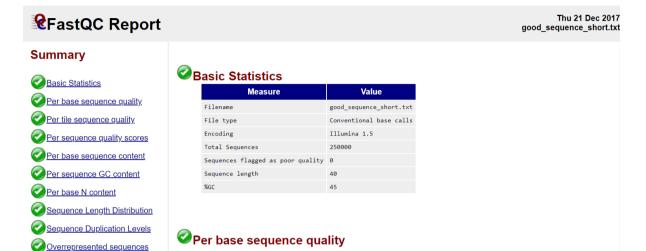
Read QC

NB

SciLifeLab

- Number of reads
- Per base sequence quality
- Per sequence quality score
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence length distribution
- Sequence duplication levels
- Overrepresented sequences
- Adapter content
- Kmer content

https://sequencing.qcfail.com/



Articles about common next-generation sequencing problems

FastQC

№FastQC Report

Thu 21 Dec 2017 bad_sequence.txt

Summary

Basic Statistics

Adapter Content

- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content

⊘Basic Statistics

Measure	Value
Filename	bad_sequence.txt
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	395288
Sequences flagged as poor quality	0
Sequence length	40
%GC	47

②Per base sequence quality

Quality scores across all bases (Illumina 1.5 encoding)

34

37

38

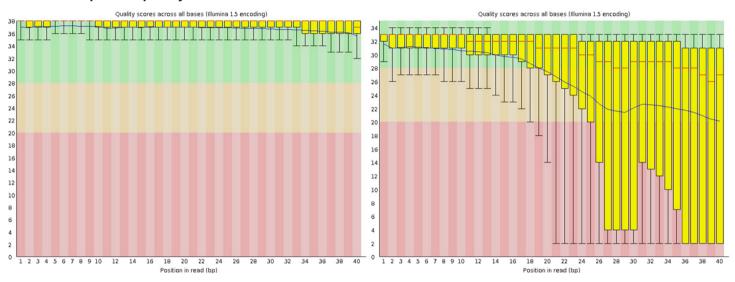
39

30

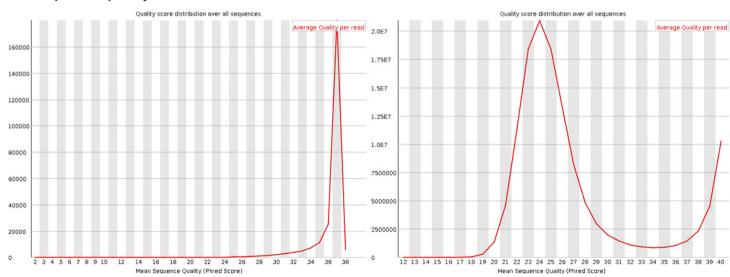
30

30

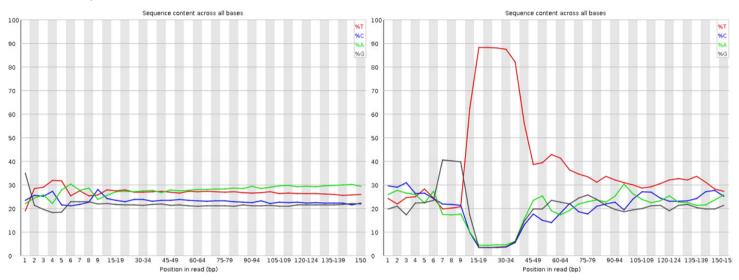
31

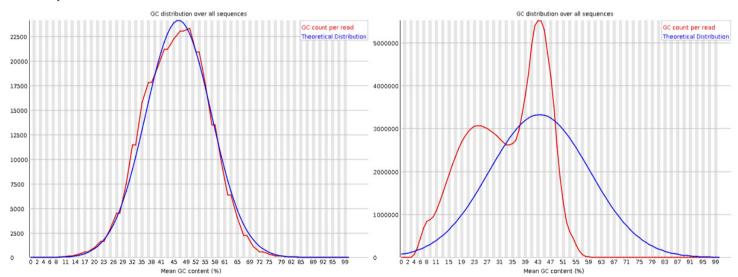

32

Quality scores across all bases (Illumina 1.5 encoding)

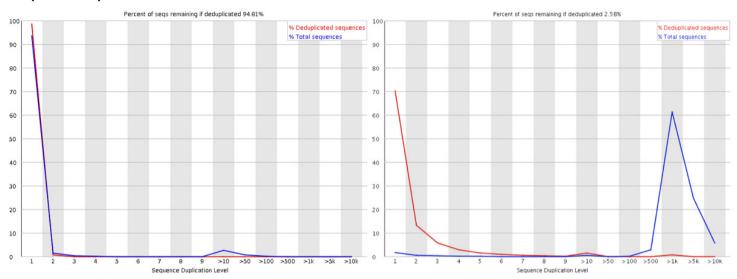

Read QC • PBSQ, PSQS

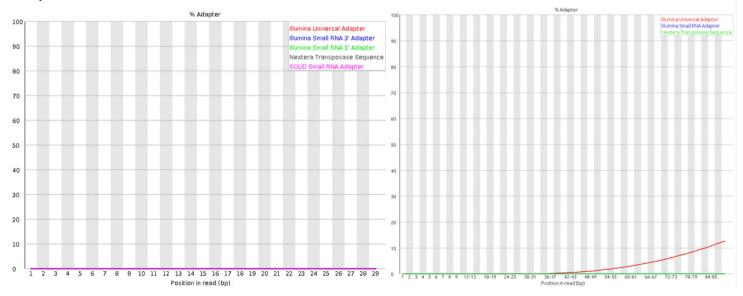
Per base sequence quality


Per sequence quality scores


Read QC • PBSC, PSGC

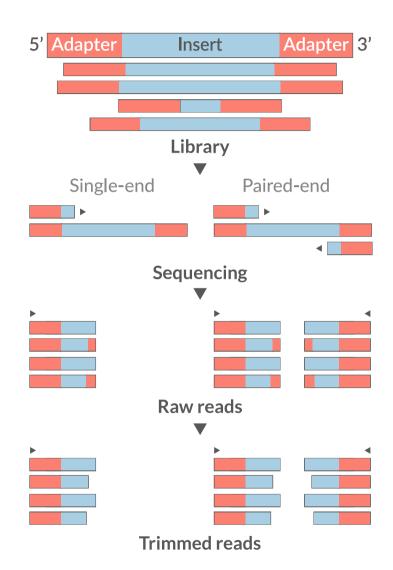
Per base sequence content


Per sequence GC content

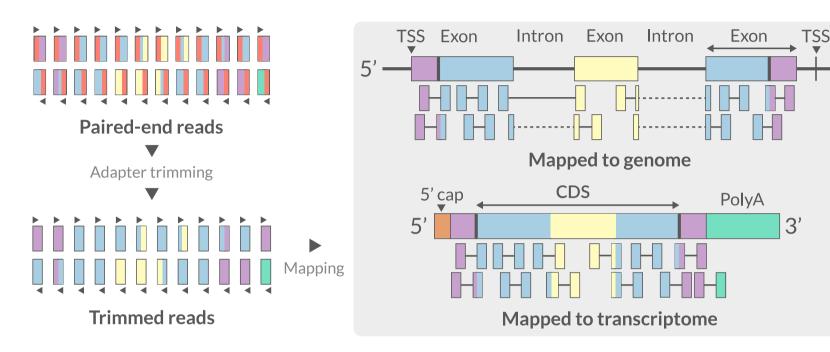

Read QC • SDL, AC

Sequence duplication level

Adapter content

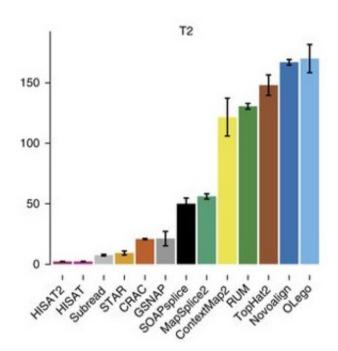


Trimming


- Trim IF necessary
 - Synthetic bases can be an issue for SNP calling
 - Insert size distribution may be more important for assemblers
- Trim/Clip/Filter reads
- Remove adapter sequences
- Trim reads by quality
- Sliding window trimming
- Filter by min/max read length
 - Remove reads less than ~18nt
- Demultiplexing/Splitting

♣ Cutadapt, fastp, Skewer, Prinseq

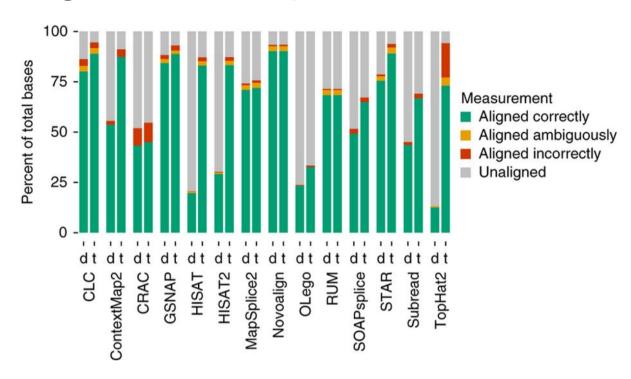
Mapping



- Aligning reads back to a reference sequence
- Mapping to genome vs transcriptome
- Splice-aware alignment (genome)

♣ STAR, HiSat2, GSNAP, Novoalign (Commercial)

Aligners • Speed



Program	Time_Min	Memory_GB
HISATx1	22.7	4.3
HISATx2	47.7	4.3
HISAT	26.7	4.3
STAR	25	28
STARx2	50.5	28
GSNAP	291.9	20.2
TopHat2	1170	4.3

Aligners • Accuracy

- Novel variants / RNA editing
- Allele-specific expression
- Genome annotation
- Gene and transcript discovery
- Differential expression

Mapping

• Reads (FASTQ)

@instrument:runid:flowcellid:lane:tile:xpos:ypos read:isfiltered:controlnumber:sampleid

Reference Genome/Transcriptome (FASTA)

• Annotation (GTF/GFF)

```
#!genome-build GRCz10
#!genebuild-last-updated 2016-11
4 ensembl_havana gene 6732 52059 . - . gene_id "ENSDARG00000104632"; gene
```

seq source feature start end score strand frame attribute

Alignment

• SAM/BAM (Sequence Alignment Map format)

ST-E00274:188:H3JWNCCXY:4:1102:32431:49900	163	1	1	60	8S139M4S	=	385

query flag ref pos mapq cigar mrnm mpos tlen seq qual opt

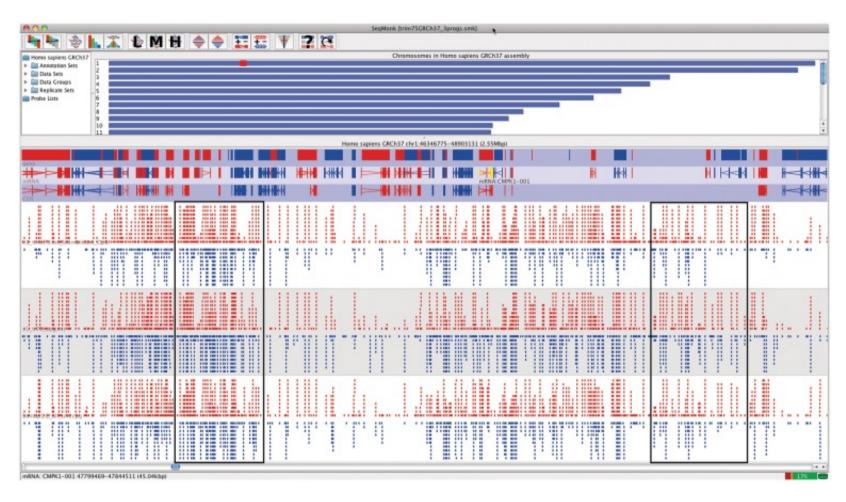
Format	Size_GB				
SAM	7.4				
BAM	1.9				
CRAM lossless Q	1.4				
CRAM 8 bins Q	0.8				
CRAM no Q	0.26				

Visualisation • tview

samtools tview alignment.bam genome.fasta

911 921 931 GTAGGTTTAATTTCATCTTCTAATTTAG	941 AATCTTGCCAATCA	951 961 AGCCCTCTCGAAGTTG	971 GCAATATCTATA	981 ACTCAACCT	991 CTGCTTCTGAGA	1001 TTCTAAGTA	1011 CCTTAGATGO	1021 CCAAGTACATTA	1031 CTATAATTGG	1041 TGTTATCGGG	1051 TCTTCCAACT	1061 CCTCCATTC	1071 AAGACTTAATTGA	ACTCTG
GT GTTTAATTTCATCTTCTAATTTAG				-									aagacttaattga	
GT ATTTCATCTTCTAATTTAG	AATCTTGCCAATCA	AGCCCTCTCGAAGTTG	GCAATATCTATA		tgcttctgaga								aagacttaattga	
GT atttcatcttctaatttag	aatcttgccaatca	agccctctcgaagttg	gcaatatctata	actcaac				CAAGTACATTA				cctccattc	aagacttaattga	actctg
GT atttcatcttctaatttag	aatcttgccaatca	agccctctcgaagttg	caatatctata	actcaac	GCTTCTGAGA	TTCTAAGTA	CCTTAGATGO	CAAGTACATTA	CTATAATTGG	TGTTATCGGG	TCTTCCAA	cctccattc	aagacttaattga	actctg
GTAGGTTTAAT	aatcttgccaatca	agccctctcgaagttg	gcaatatctata	actcaacct	ctgcttctgaga	ttcta	CTTAGATGO	CAAGTACATTA	CTATAATTGG	TGTTATCGGG	TCTTCCAACT	CCTCCATTC	AAGACTTAA	ctg
GTAGGTTTAATTT	tcttgccaatca	agccctctcgaagttg	gcaatatctata	actcaacct	ctgcttctgaga	ttctaag	CTTAGATGO	CAAGTACATTA	CTATAATTGG	TGTTATCGGG	TCTTCCAACT	CCTCCATTC	AAGACTTAA	
GTAGGTTTAATTTCATCTT		agccctctcgaagttg						CAAGTACATTA						
GTAGGTTTAATTTCATCTTC		AGCCCTCTCGAAGTTG											AAGACTTAATTGA	
GTAGGTTTAATTTCATCTTCTAAT		AGCCCTCTCGAAGTTG											AAGACTTAATTGA	
gtaggtttaatttcatcttctaatttag		AGCCCTCTCGAAGTTG											AAGACTTAATTGA	
GTAGGTTTAATTTCATCTTCTAATTTAG		AGCCTTCTCGAAGTTG						catta					aagacttaattga	
GTAGGTTTAATTTCATCTTCTAATTTAG		AGCCCTCTCGAAGTTG											aagacttaattga	
GTAGGTTTAATTTCATCTTCTAATTTAG		AGCCCTCTCGAAGTTG											aagacttaattga	
GTAGGTTTAATTTCATCTTCTAATTTAG		gccctctcgaagttg											AAGACTTAATTGA	
GTAGGTTTAATTTCATCTTCTAATTTAG		CCCTCTCGAAGTTG											aagacttaattga	
GTAGGTTTAATTTCATCTTCTAATTTAG GTAGGTTTAATTTCATCTTCTAATTTAG		ctctcgaagttg	GCAATATCTATA										aagacttaattga AAGACTTAATTGA	
GTAGGTTTAATTTCATCTTCTAATTTAG			GCAATATCTATA										aagacttaattga	
GTAGGTTTAATTTCATCTTCTAATTTAG			GCAATATCTATA							9			aagacttaattga	
gtaggtttaatttcatcttctaatttag		Andilo			CTGCTTCTGAGA				CTATAA				aagacttaattga	
GTAGGTTTAATTTCATCTTCTAATTTAG					CTGCTTCTGAGA					TG			AAGACTTAATTG/	
GTAGGTTTAATTTCATCTTCTAATTTAG			CININ	ic i critico i				caagtacatta					AAGACTTAATTG/	
gtaggtttaatttcatcttctaatttag		agcc						caagtacatta					aagacttaattga	
GTAGGTTTAATTTCATCTTCTAATTTAG								caagtacatta					aagacttaattga	
gtaggtttaatttcatcttctaatttag								caagtacatta					aagacttaattga	
GTAGGTTTAATTTCATCTTCTAATTTAG													aagacttaattga	
GTAGGTTTAATTTCATCTTCTAATTTAG													aagacttaattga	
GTAGGTTTAATTTCATCTTCTAATTTAG	AATCTTGCCAATCA	AGCCCTCTCGAAG						caagtacatta					aagacttaattga	
GTAGGTTTAATTTCATCTTCTAATTTAG	AATCTTGCCAATCA	AGCCCTCTCGAAG			gaga	ttctaagta	ccttagatgo	caagtacatta	ctataattgg	tgttatcggg	tcttccaact	cctc	AAGACTTAATTGA	ACTCTG
ATTTCATCTTCTAATTTAG	AATCTTGCCAATCA	AGCCCTCTCGAAGTTG	GCAATATCTATA	ACTCAAC	aga	ttctaagta	ccttagatgo	caagtacatta	ctataattgg	tgttatcggg	tcttccaact	cctcc	cttaattga	actctg
TTCATCTTCTAATTTAG	AATCTTGCCAATCA	AGCCCTCTCGAAGTTG	GCAATATCTATA	ACTCAACCT	AGA	TTCTAAGTA	CCTTAGATGO	CAAGTACATTA	CTATAATTGG	TGTTATCGGG	TCTTCCAACT	ССТСС	attga	actctg
					ga	ttctaagta	ccttagatgo	caagtacatta	ictataattgg	tgttatcggg	tcttccaact	cctcca		
								caagtacatta						
					ga			caagtacatta						
						aagta	ccttagatgo	caagtacatta	ictataattgg	tgttatcggg				
													aagacttaattga	
													AAGACTTAATTGA	
													AAGACTTAATTGA	
													aagacttaattga	
													aagacttaattga	
													aagacttaattga aagacttaattga	
											aact		aagacttaattga	
													aagacttaattga	
													aagacttaattga	
												000100	and and a country of	9

Visualisation • IGV

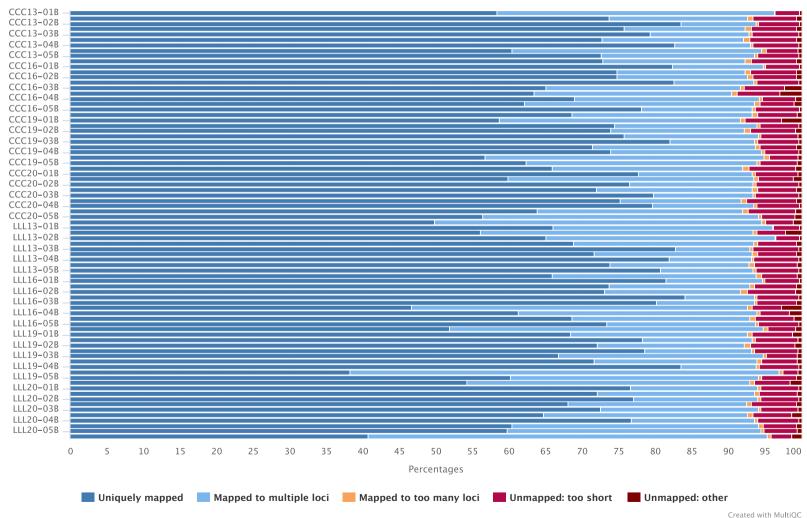


♣ IGV, UCSC Genome Browser

Visualisation • SeqMonk

Alignment QC

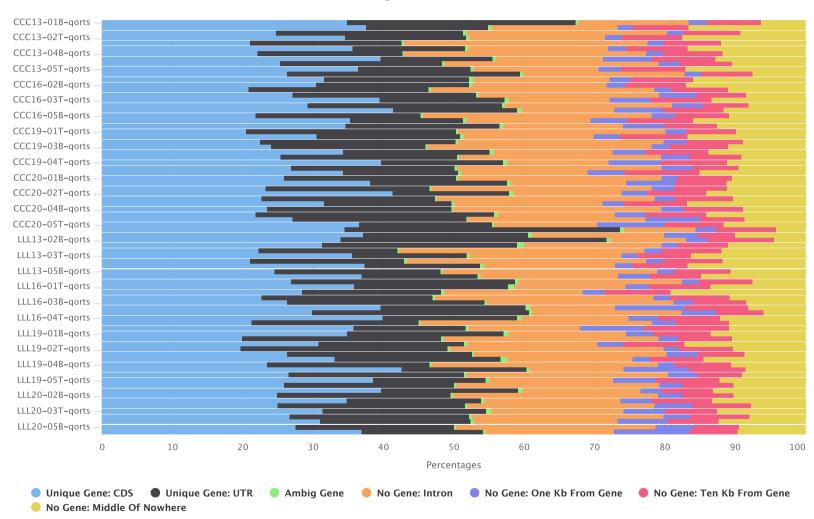
- Number of reads mapped/unmapped/paired etc
- Uniquely mapped
- Insert size distribution
- Coverage
- Gene body coverage
- Biotype counts / Chromosome counts
- Counts by region: gene/intron/non-genic
- Sequencing saturation
- Strand specificity


♣ STAR (final log file), samtools > stats, bamtools > stats, QoRTs, RSeQC, Qualimap

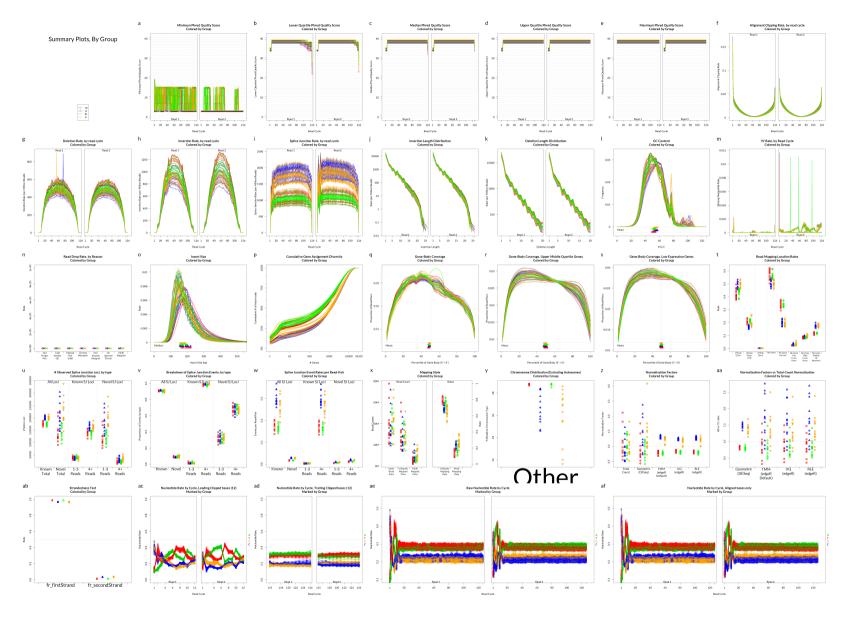
Alignment QC • STAR Log

MultiQC can be used to summarise and plot STAR log files.

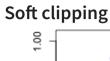
STAR Alignment Scores

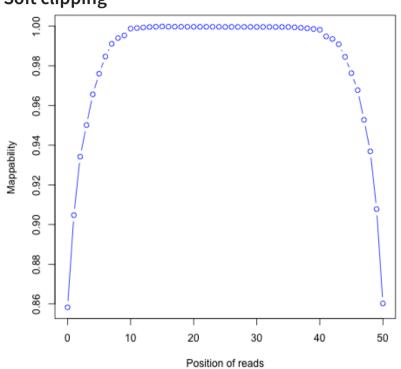


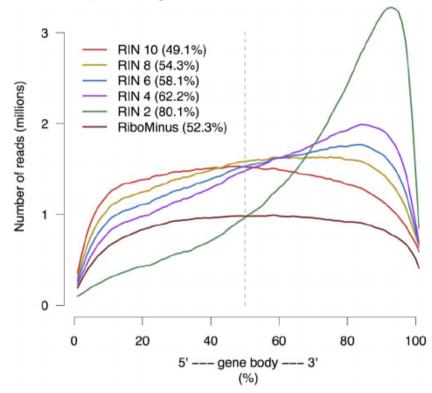
Alignment QC • Features

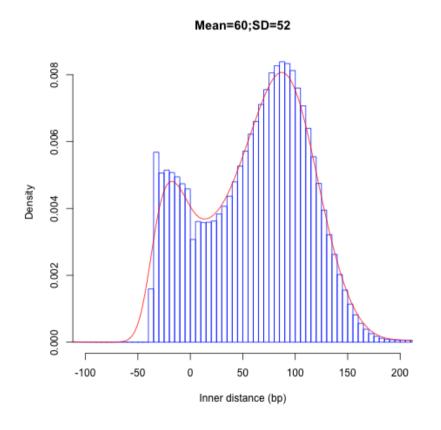

QoRTs was run on all samples and summarised using MultiQC.

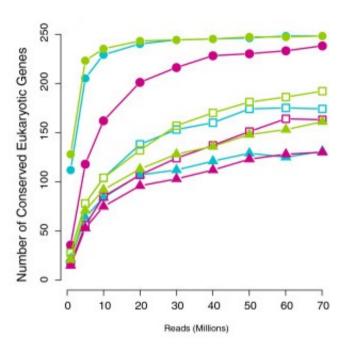
QoRTs: Alignment Locations


QoRTs

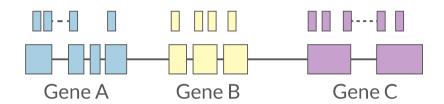


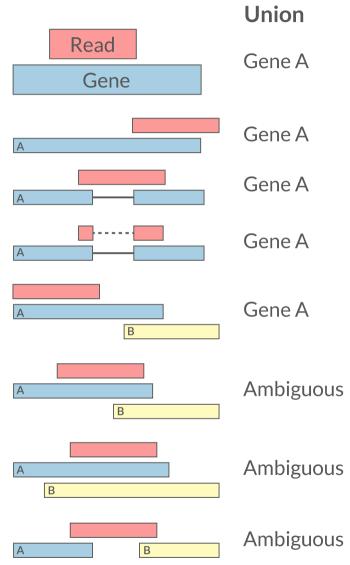

Alignment QC


Gene body coverage


Alignment QC

Insert size


Saturation curve

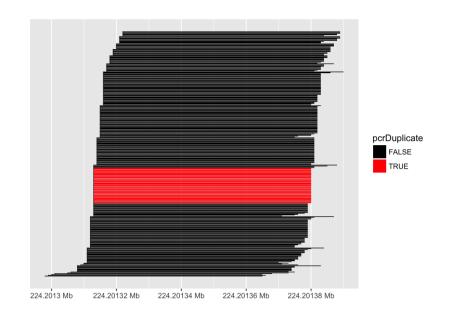

Quantification • Counts

NB SciLifeLab

- Read counts = gene expression
- Reads can be quantified on any feature (gene, transcript, exon etc)
- Intersection on gene models
- Gene/Transcript level

featureCounts, HTSeq

Quantification



PCR duplicates

- Ignore for RNA-Seq data
- Computational deduplication (Don't!)
- Use PCR-free library-prep kits
- Use UMIs during library-prep

Multi-mapping

- Added (BEDTools multicov)
- Discard (featureCounts, HTSeq)
- Distribute counts (Cufflinks)
- Rescue
 - Probabilistic assignment (Rcount, Cufflinks)
 - o Prioritise features (Rcount)
 - Probabilistic assignment with EM (RSEM)

Fu, Yu, et al. "Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers." BMC genomics 19.1 (2018): 531

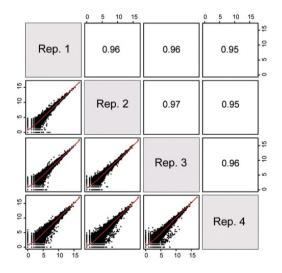
Parekh, Swati, et al. "The impact of amplification on differential expression analyses by RNA-seq." Scientific reports 6 (2016): 25533

[&]amp; Klepikova, Anna V., et al. "Effect of method of deduplication on estimation of differential gene expression using RNA-seq." PeerJ 5 (2017): e3091

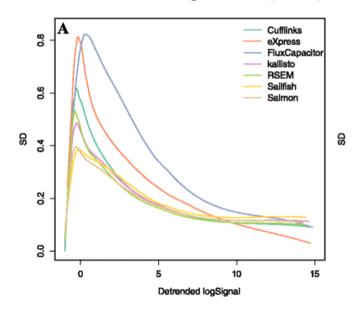
Quantification • Abundance

- Count methods
 - Provide no inference on isoforms
 - Cannot accurately measure fold change
- Probabilistic assignment
 - Deconvolute ambiguous mappings
 - o Transcript-level
 - o cDNA reference

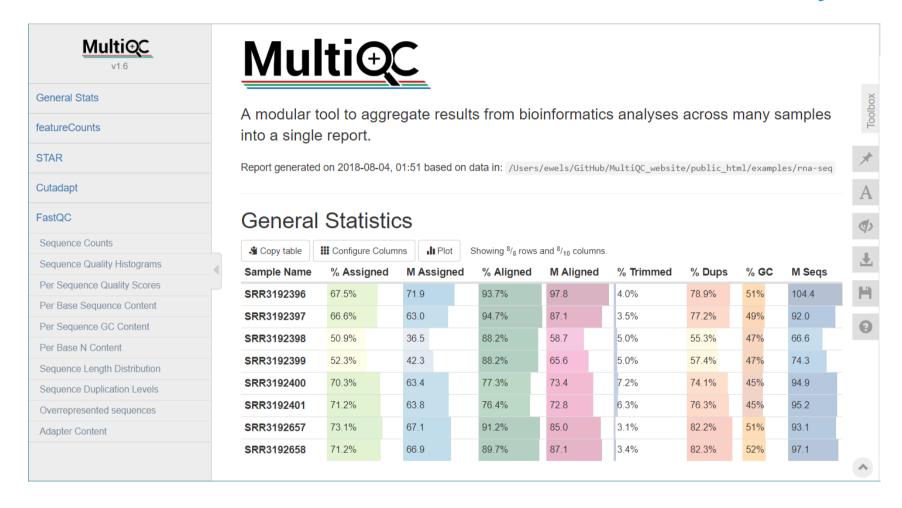
Kallisto, Salmon


- Ultra-fast & alignment-free
- Subsampling & quantification confidence
- Transcript-level estimates improves gene-level estimates
- Kallisto/Salmon > transcript-counts > tximport() > gene-counts

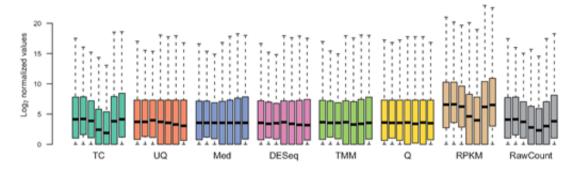
RSEM, Kallisto, Salmon, Cufflinks2

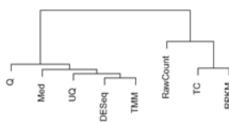

Quantification QC

• Pairwise correlation between samples must be high (>0.9)

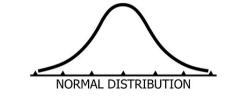

• Count QC using RNASeqComp

MultiQC





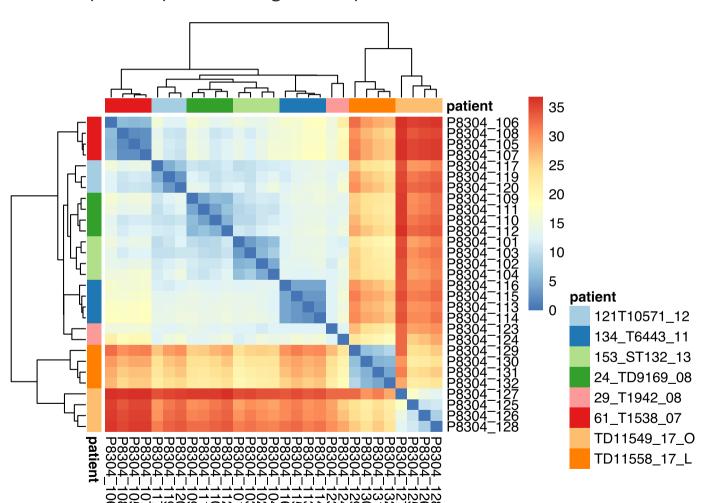
Normalisation



- Control for Sequencing depth & compositional bias
- Median of Ratios (DESeq2) and TMM (edgeR) perform the best

- For DGE using DGE packages, use raw counts
- For clustering, heatmaps etc use VST, VOOM or RLOG
- For own analysis, plots etc, use TPM
- Other solutions: spike-ins/house-keeping genes

Dillies, Marie-Agnes, et al. "A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis." Briefings in bioinformatics 14.6 (2013): 671-683

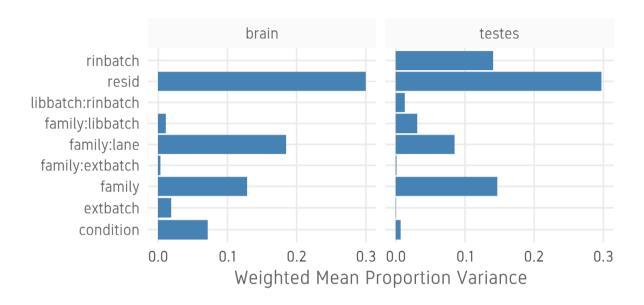

② Evans, Ciaran, Johanna Hardin, and Daniel M. Stoebel. "Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions." Briefings in bioinformatics (2017)

[•] Wagner, Gunter P., Koryu Kin, and Vincent J. Lynch. "Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples." Theory in biosciences 131.4 (2012): 281-285

Exploratory • Heatmap

- Remove lowly expressed genes
- Transform raw counts to VST, VOOM, RLOG, TPM etc
- Sample-sample clustering heatmap

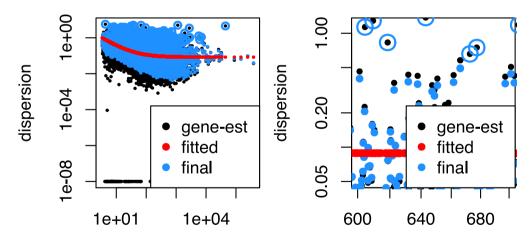
Exploratory • MDS



- 121T10571_12
- 134_T6443_11
- 153_ST132_13
- 24_TD9169_08
- 29_T1942_08
- 61_T1538_07
- TD11549_17_0
- TD11558_17_L

Batch correction

• Estimate variation explained by variables (PVCA)


- Find confounding effects as surrogate variables (SVA)
- Model known batches in the LM/GLM model
- Correct known batches (ComBat)(Harsh!)
- Interactively evaluate batch effects and correction (BatchQC)

SVA, PVCA, BatchQC

DGE

- DESeq2, edgeR (Neg-binom > GLM > Test), Limma-Voom (Neg-binom > Voom-transform > LM > Test)
- DESeq2 ~age+condition
 - Estimate size factors estimateSizeFactors()
 - Estimate gene-wise dispersion estimateDispersions()
 - Fit curve to gene-wise dispersion estimates
 - Shrink gene-wise dispersion estimates
 - GLM fit for each gene
 - Wald test nbinomWaldTest()

mean of normalized count

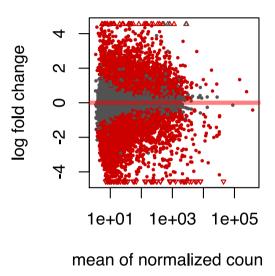
mean of normalized count

♣ DESeq2, edgeR, Limma-Voom

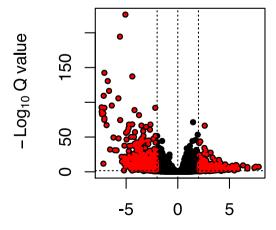
DGE

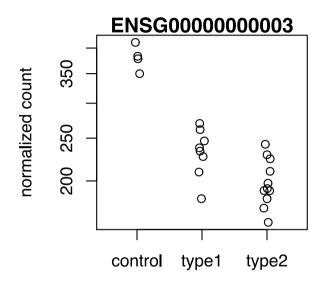
• Results results()

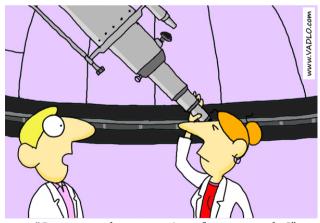
```
## log2 fold change (MLE): type type2 vs control
## Wald test p-value: type type2 vs control
## DataFrame with 1 row and 6 columns
                                     log2FoldChange
                                                         lfcSF
                          haseMean
                                          <numeric>
##
                         <numeric>
                                                           <numeric>
## ENSG0000000003 242.307796723287 -0.93292608960856 0.11428515031257
                                                 pvalue
##
                               stat
                          <numeric>
                                               <numeric>
## ENSG0000000003 -8.16314356727017 3.26416150297406e-16
                                  padi
##
                             <numeric>
## ENSG00000000003 1.36240610021329e-14
```


• Summary summary()

```
##
## out of 17889 with nonzero total read count
## adjusted p-value < 0.1
## LFC > 0 (up) : 4526, 25%
## LFC < 0 (down) : 5062, 28%
## outliers [1] : 25, 0.14%
## low counts [2] : 0, 0%
## (mean count < 3)
## [1] see 'cooksCutoff' argument of ?results
## [2] see 'independentFiltering' argument of ?results</pre>
```

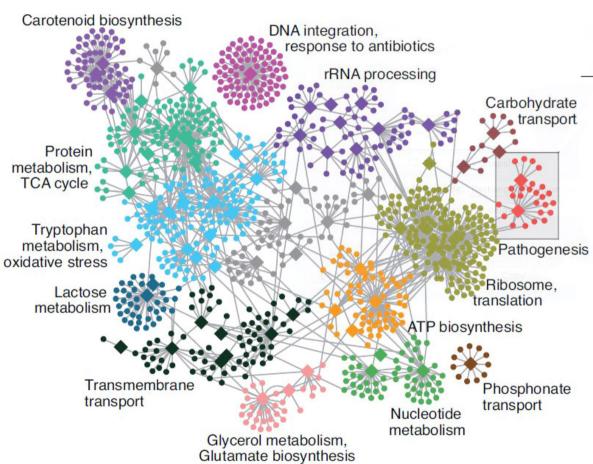

DGE


MA plot plotMA()

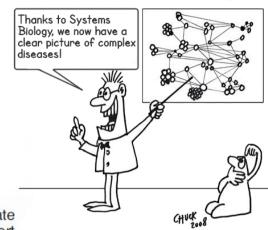


• Volcano plot

Normalised counts plotCounts()

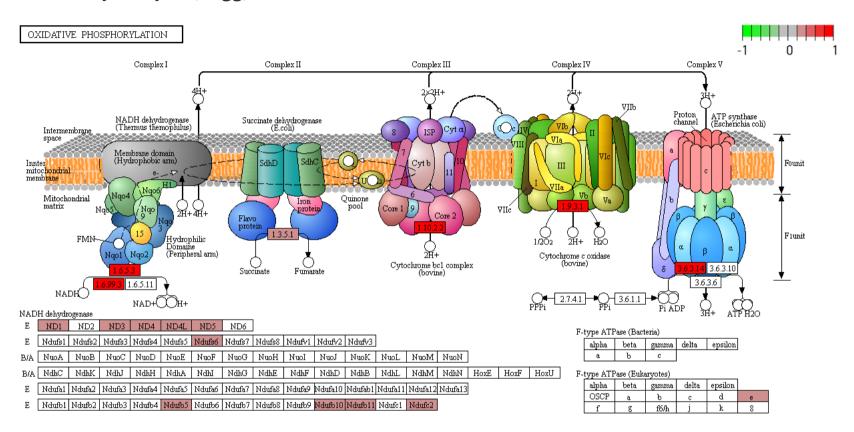


group


"Can you see the upper points of my scatter plot?"

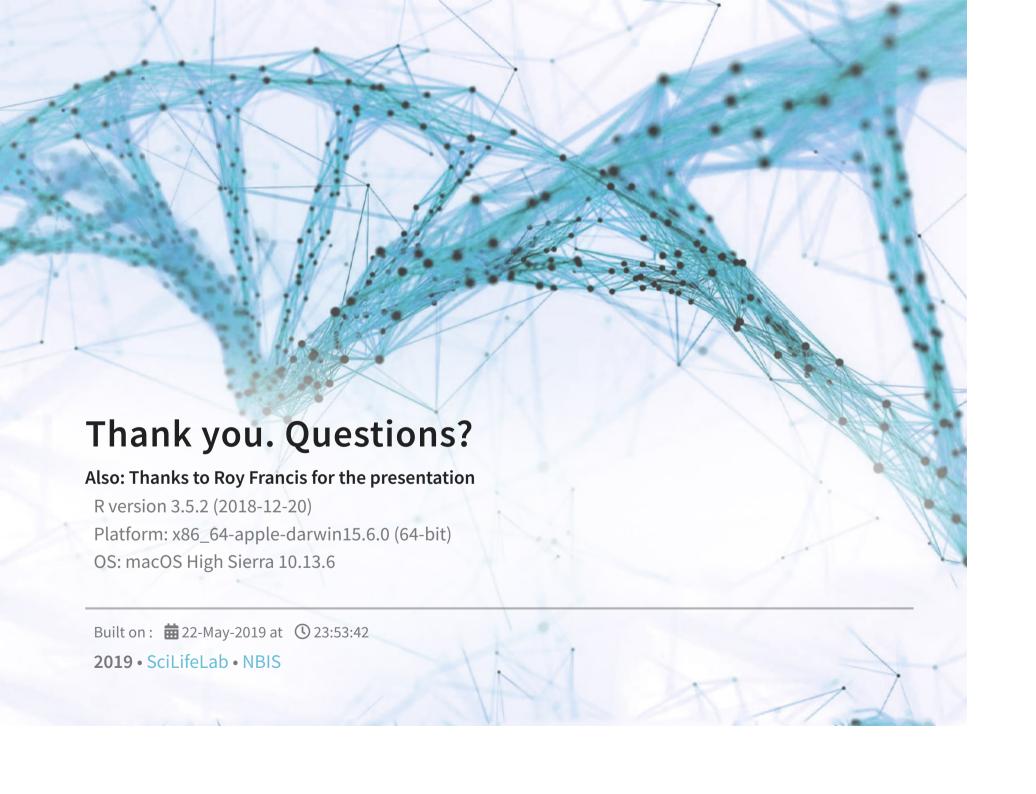
Functional analysis • GO

- Gene enrichment analysis
- Gene set enrichment analysis (GSEA)
- Gene ontology / Reactome databases



Functional analysis • Kegg

• Pathway analysis (Kegg)


♣ DAVID, clusterProfiler, ClueGO, ErmineJ, pathview

Summary

- Sound experimental design to avoid confounding
- Plan carefully about lib prep, sequencing etc based on experimental objective
- Biological replicates may be more important than paired-end reads or long reads
- Discard low quality bases, reads, genes and samples
- Verify that tools and methods align with data assumptions
- Experiment with multiple pipelines and tools
- QC! QC everything at every step

© Conesa, Ana, et al. "A survey of best practices for RNA-seq data analysis." Genome biology 17.1 (2016): 13

Hands-On tutorial

Main exercise

- 01 Check the quality of the raw reads with FastQC
- 02 Map the reads to the reference genome using **Star**
- 03 Assess the post-alignment quality using **QualiMap**
- 04 Count the reads overlapping with genes using **featureCounts**
- 05 Find DE genes using edgeR in R

Bonus exercises

- 01 Functional annotation of DE genes using GO/Reactome/Kegg databases
- 02 Visualisation of RNA-seq BAM files using IGV genome browser
- 03 RNA-Seq figures and plots using R
- 04 De-novo transcriptome assembly using **Trinity**

Data: /sw/courses/ngsintro/rnaseq/

Work: /proj/g2019007/nobackup/<user>/rnaseq/

Hands-On tutorial

Course data directory

/sw/courses/ngsintro/rnaseq/

```
rnaseq/
+-- bonus/
    +-- assembly/
   +-- exon/
    +-- funannot/
    +-- visual/
+-- documents/
+-- main/
    +-- 1 raw/
   +-- 2_fastqc/
   +-- 3 mapping/
    +-- 4_qualimap/
    +-- 5_dge/
    +-- 6_multiqc/
+-- reference/
    +-- mouse/
    +-- mouse_chr11/
+-- scripts/
```

Your work directory

/proj/g2019007/nobackup/[user]/

```
[user]/
rnaseq/
+-- 1_raw/
+-- 2_fastqc/
+-- 3_mapping/
+-- 4_qualimap/
+-- 5_dge/
+-- 6_multiqc/
+-- reference/
| +-- mouse/
| +-- mouse_chr11/
+-- scripts/
+-- funannot/
+-- assembly/
```