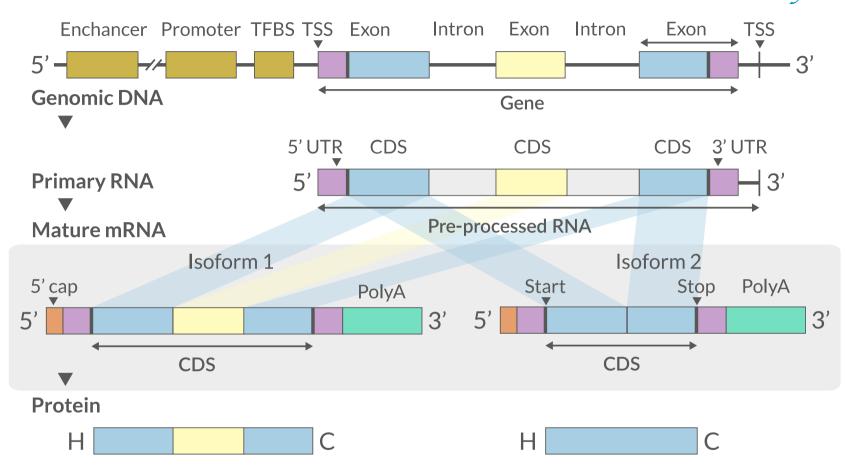
NB§S SciLifeLab

Introduction to RNA-seq

Introduction to Bioinformatics Using NGS Data

Lokesh Mano | 28-Nov-2019


Contents

- RNA Sequencing
- Workflow
- DGE Workflow
- ReadQC
- Mapping
- Alignment QC
- Quantification
- Normalisation
- Exploratory
- DGE
- Functional analyses
- Summary
- Help

RNA Sequencing

NB SciLifeLab

- The transcriptome is spatially and temporally dynamic
- Data comes from functional units (coding regions)
- Only a tiny fraction of the genome

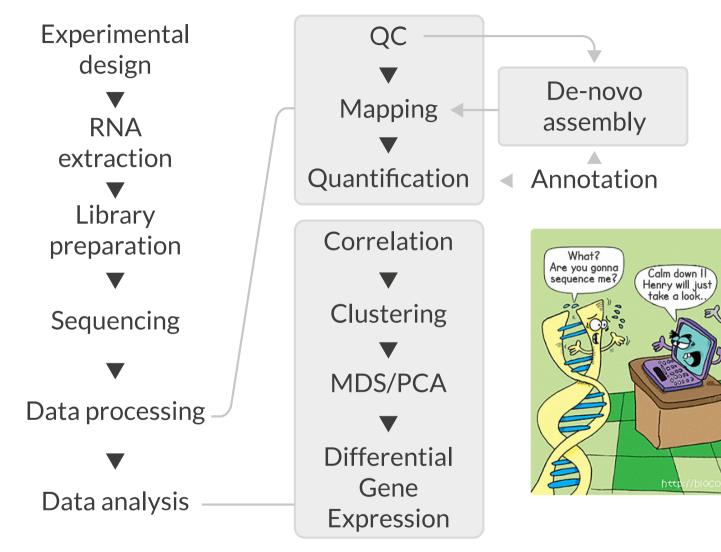
How many do RNASeq?

How many of you have/will have RNASeq as a component in your research?

• Raise of hands

Menti.com

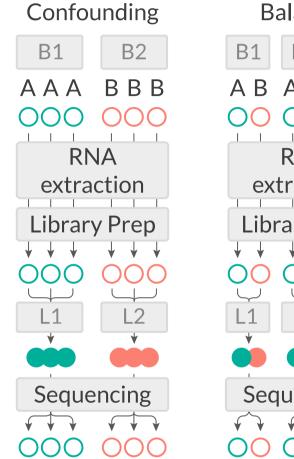
Applications



- Identify gene sequences in genomes
- Learn about gene function
- Differential gene expression
- Explore isoform and allelic expression
- Understand co-expression, pathways and networks
- Gene fusion
- RNA editing
- Phylogeny
- Gene discovery
- Other

Workflow

Yeah, Just a look.


🔗 Conesa, Ana, et al. "A survey of best practices for RNA-seq data analysis." Genome biology 17.1 (2016): 13

Experimental design

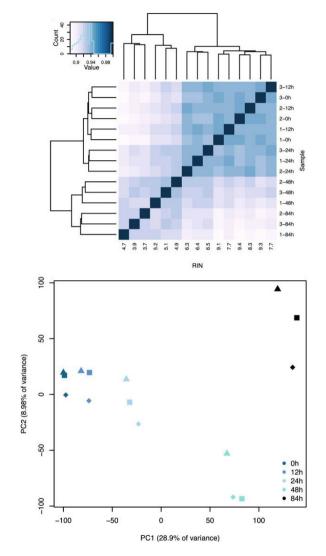
- Balanced design
- Technical replicates not necessary (Marioni *et al.*, 2008)
- Biological replicates: 6 12 (Schurch et al., 2016)
- ENCODE consortium •
- Previous publications
- Power analysis

RnaSegSampleSize (Power analysis), Scotty

(Power analysis with cost)

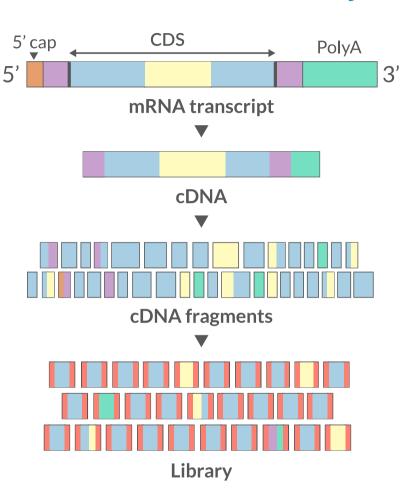
	В	alanc	ed
	B1	B2	B3
			A B OO
		RNA	
	ex	tracti	on
	Lib	rary P	rep
	↓ ↓	↓ ↓	↓ ↓
[
	Sec	quenc	ing
(

Susby, Michele A., et al. "Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression." Bioinformatics 29.5 (2013): 656-657


- S Marioni, John C., et al. "RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays." Genome research (2008)
- Schurch, Nicholas J., et al. "How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?." Rna (2016)

Stao, Shilin, et al. "RnaSeqSampleSize: real data based sample size estimation for RNA sequencing." BMC bioinformatics 19.1 (2018): 191

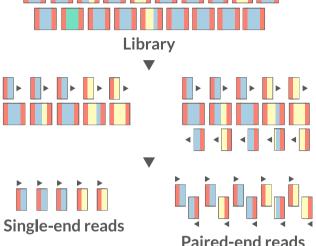
RNA extraction


- Sample processing and storage
- Total RNA/mRNA/small RNA
- DNAse treatment
- Quantity & quality
- RIN values (Strong effect)
- Batch effect
- Extraction method bias (GC bias)

Romero, Irene Gallego, *et al.* "RNA-seq: impact of RNA degradation on transcript quantification." BMC biology 12.1 (2014): 42
 Kim, Young-Kook, *et al.* "Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells." Molecular cell 46.6 (2012): 893-89500481-9).

Library prep

- PolyA selection
- rRNA depletion
- Size selection
- PCR amplification (See section PCR duplicates)
- Stranded (directional) libraries
 - Accurately identify sense/antisense transcript
 - Resolve overlapping genes
- Exome capture
- Library normalisation
- Batch effect



NB^{*}S SciLifeLab

Sequencing

- Sequencer (Illumina/PacBio)
- Read length
 - Greater than 50bp does not improve DGE
 - Longer reads better for isoforms
- Pooling samples
- Sequencing depth (Coverage/Reads per sample)
- Single-end reads (Cheaper)
- Paired-end reads
 - Increased mappable reads
 - Increased power in assemblies
 - Better for structural variation and isoforms
 - Decreased false-positives for DGE

Chhangawala, Sagar, et al. "The impact of read length on quantification of differentially expressed genes and splice junction detection." Genome biology 16.1 (2015): 131
 Corley, Susan M., et al. "Differentially expressed genes from RNA-Seq and functional enrichment results are affected by the choice of single-end versus paired-end reads and stranded versus non-stranded protocols." BMC genomics 18.1 (2017): 399

Subject Comparison of PE and SE for RNA-Seq, SciLifeLab

Workflow • DGE

NB SciLifeLab

Reads	FastQ	FastQ	FastQ
Mapping	STAR	HiSat2	
			[Kallisto/ Salmon]
Quantification	featureCounts	StringTie	
Differential gene expression	DESeq2/ edgeR/ Limma	Ballgown	Sleuth

De-Novo assembly

- When no reference genome available
- To identify novel genes/transcripts/isoforms
- Identify fusion genes
- Assemble transcriptome from short reads
- Access quality of assembly and refine
- Map reads back to assembled transcriptome

🔁 Trinity, SOAPdenovo-Trans, Oases, rnaSPAdes

Read QC

- Number of reads
- Per base sequence quality
- Per sequence quality score
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence length distribution
- Sequence duplication levels
- Overrepresented sequences
- Adapter content
- Kmer content

🖶 FastQC, MultiQC

https://sequencing.qcfail.com/

NB^{*}S SciLifeLab

Articles about common next-generation sequencing problems

FastQC

FastQC Report			Thu 21 Dec 20 good_sequence_short.f
Summary			
Basic Statistics	Basic Statistics		
	Measure	Value	
Per base sequence quality	Filename	<pre>good_sequence_short.txt</pre>	
<u> Per tile sequence quality</u>	File type	Conventional base calls	
Per sequence quality scores	Encoding	Illumina 1.5	
Per base sequence content		250000	
	Sequences flagged as poor quality		
Per sequence GC content		40	
Per base N content	%GC	45	
Sequence Length Distribution			
Sequence Duplication Levels			
Overrepresented sequences	Per base sequence qua	lity	
Adapter Content		uality scores across all base	s (Illumina 1.5 encoding)
	│ <u>╞┶╤╨╤╩┯┵┼╌┼╌┽╌┼╶┼╶┼╺┶╙_┲╝</u> ╦╨	_{╘┍} ╜╤╢ _╤ ╜╤╝╤╢ _┍ ║ _┍ ╢ _┍ ╢ _┍ ╢ _┍ ╢	┙┶┙┶┙┶┙┶┙┶┙┶┙╸╢╴║╴║╴║╴║╴║
EastOC Report			Thu 21 Dec 20

PastQC Report

Summary

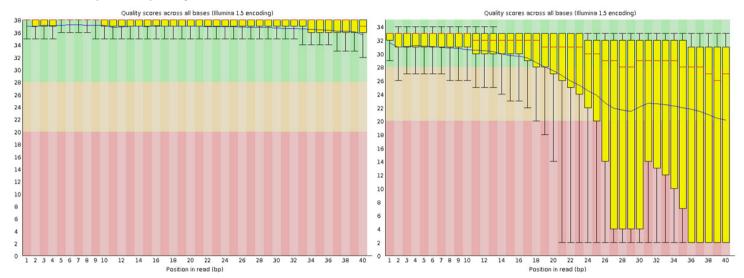
Basic Statistics
Per base sequence quality.
Per tile sequence quality scores
Per base sequence content
Per base N content
Per base N content
Sequence Length Distribution
Sequence Duplication Levels
Overrepresented sequences
Adapter Content

Basic Statistics

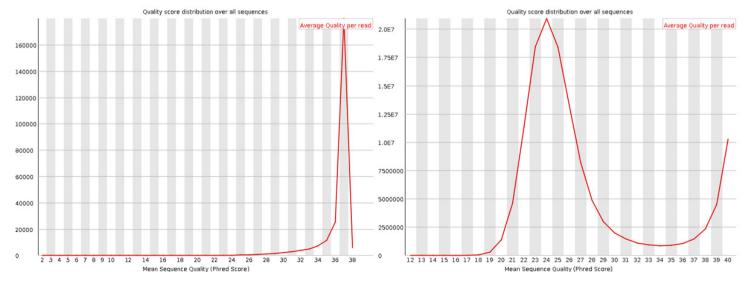
Measure	Value
Filename	bad_sequence.txt
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	395288
Sequences flagged as poor quality	0
Sequence length	40
%GC	47

Per base sequence quality

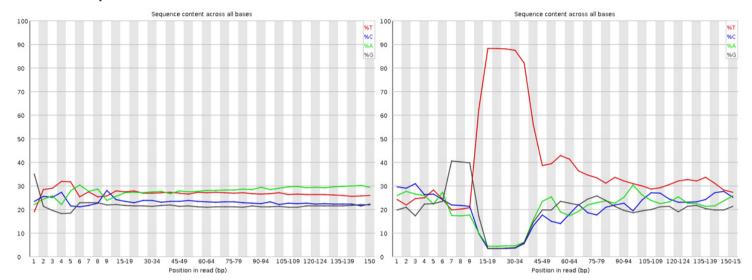
Quality scores across all bases (Illumina 1.5 encoding)

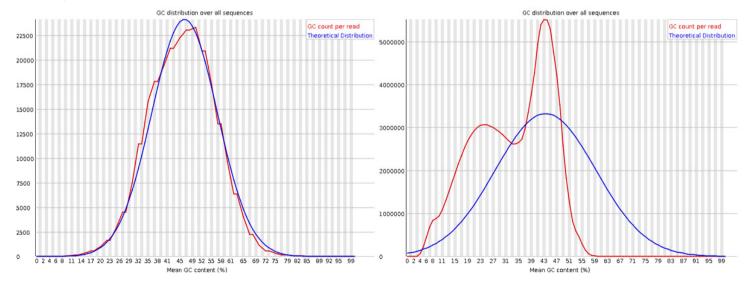

34			гтт	ТТ	-					
32	\mathbb{R}								TT]	

bad_sequence.txt

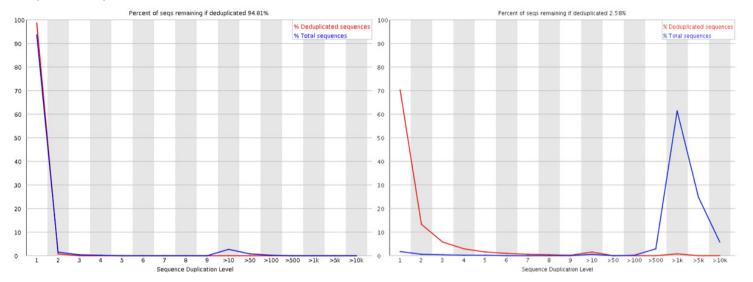

Read QC • PBSQ, PSQS

Per base sequence quality


Per sequence quality scores


Read QC • PBSC, PSGC

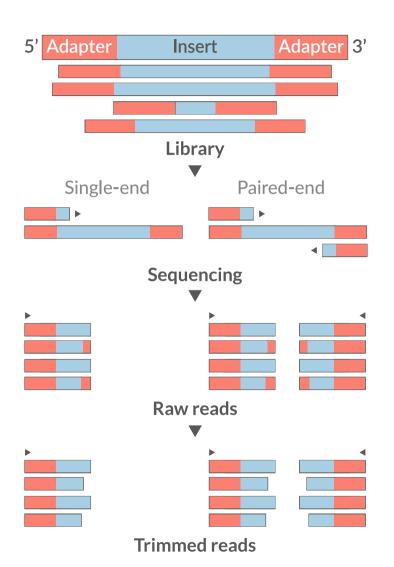
Per base sequence content


Per sequence GC content

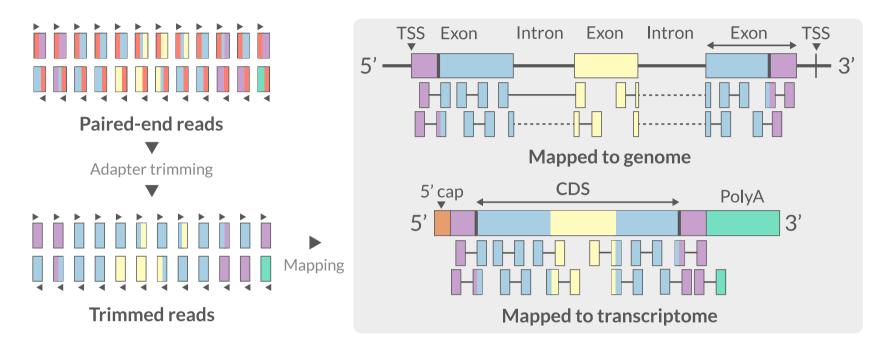
Read QC • SDL, AC

Sequence duplication level

Adapter content

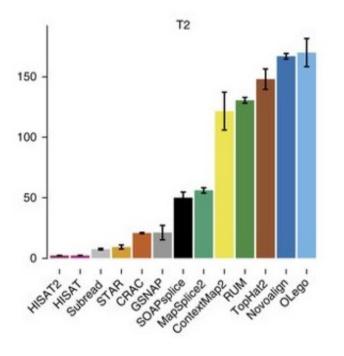


Trimming


- Trim IF necessary
 - Synthetic bases can be an issue for SNP calling
 - Insert size distribution may be more important for assemblers
- Trim/Clip/Filter reads
- Remove adapter sequences
- Trim reads by quality
- Sliding window trimming
- Filter by min/max read length
 - Remove reads less than ~18nt
- Demultiplexing/Splitting

🚘 Cutadapt, fastp, Skewer, Prinseq

Mapping

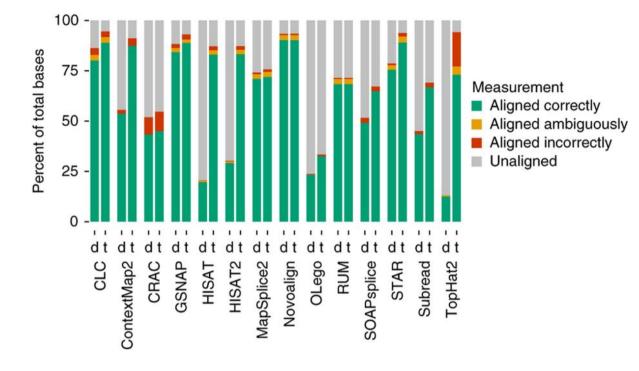

- Aligning reads back to a reference sequence
- Mapping to genome vs transcriptome
- Splice-aware alignment (genome)

📥 STAR, HiSat2, GSNAP, Novoalign (Commercial)

🔗 Baruzzo, Giacomo, et al. "Simulation-based comprehensive benchmarking of RNA-seq aligners." Nature methods 14.2 (2017): 135

Aligners • Speed

NB SciLifeLab



Program	Time_Min	Memory_GB
HISATx1	22.7	4.3
HISATx2	47.7	4.3
HISAT	26.7	4.3
STAR	25	28
STARx2	50.5	28
GSNAP	291.9	20.2
TopHat2	1170	4.3

Baruzzo, Giacomo, et al. "Simulation-based comprehensive benchmarking of RNA-seq aligners." Nature methods 14.2 (2017): 135

Aligners • Accuracy

- Novel variants / RNA editing
- Allele-specific expression
- Genome annotation

Increasing Accuracy

- Gene and transcript discovery
- Differential expression

🖶 STAR, HiSat2, GSNAP, Novoalign (Commercial)

🔗 Baruzzo, Giacomo, et al. "Simulation-based comprehensive benchmarking of RNA-seq aligners." Nature methods 14.2 (2017): 135

Mapping

• Reads (FASTQ)

@instrument:runid:flowcellid:lane:tile:xpos:ypos read:isfiltered:controlnumber:sampleid

• Reference Genome/Transcriptome (FASTA)

• Annotation (GTF/GFF)

#!genome-build GRCz10
#!genebuild-last-updated 2016-11
4 ensembl_havana gene 6732 52059 . - . gene_id "ENSDARG00000104632"; gene

seq source feature start end score strand frame attribute

Alignment

• SAM/BAM (Sequence Alignment Map format)

ST-E00274:188:H3JWNCCXY:4:1102:32431:49900	163	1	1	60	8S139M4S	=	385
query flag ref pos mapq cigar mrnm mpos tlen seq	qual opt						

Format	Size_GB
SAM	7.4
BAM	1.9
CRAM lossless Q	1.4
CRAM 8 bins Q	0.8
CRAM no Q	0.26

samtools tview alignment.bam genome.fasta

GTTTAATTTCATCTTCTAATTT	AGAATCTTGCCAATCAAGCCCTCTCGAAGTTGGCA			gtgttatcgggtcttcc ctcctccattcaagacttaattgac
	AGAATCTTGCCAATCAAGCCCTCTCGAAGTTGGCA		accttagatgccaagtacattactataattg	
	gaatcttgccaatcaagccctctcgaagttggca			GTGTTATCGGGTCTTCCAA cctccattcaagacttaattgac
	agaatcttgccaatcaagccctctcgaagttggca			GTGTTATCGGGTCTTCCAA cctccattcaagacttaattgac
GGTTTAAT		atatctataactcaacctctgcttctgagattcta		GTGTTATCGGGTCTTCCAACTCCTCCATTCAAGACTTAA
GGTTTAATTT		atatctataactcaacctctgcttctgagattctaag		GTGTTATCGGGTCTTCCAACTCCTCCATTCAAGACTTAA
GTTTAATTTCATCTT		atatctataactcaacctctgcttctgagattctaagt		GTGTTATCGGGTCTTCCAACTCCTCCATTCAAGACTTAAT
GTTTAATTTCATCTTC		ATATCTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA		GTGTTATCGGGTCTTCCAACTCCTCCATTCAAGACTTAATTGAC
GTTTAATTTCATCTTCTAAT		ATATCTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA		GTGTTATCGGGTCTTCCAACTCCTCCATTCAAGACTTAATTGAC
gtttaatttcatcttctaattt		ATATCTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA		GTGTTATCGGGTCTTCCAACTCCTCCATTCAAGACTTAATTGAC
GTTTAATTTCATCTTCTAATTT	3	ATATCTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA		gtgttatcgggtcttccaactcctccattcaagacttaattgac
GTTTAATTTCATCTTCTAATTT		ATATCTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA		tgttatcgggtcttccaactcctccattcaagacttaattgac
GTTTAATTTCATCTTCTAATTT	G CAATCAAGCCCTCTCGAAGTTGGCA	ATATCTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA	CCTT	gggtcttccaactcctccattcaagacttaattgac
GTTTAATTTCATCTTCTAATTT		atatctataactcaacctctgcttctgagattctaagta		GGTCTTCCAACTCCTCCATTCAAGACTTAATTGAC
GTTTAATTTCATCTTCTAATTT		ATATCTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA		ggtcttccaactcctccattcaagacttaattgac
GTTTAATTTCATCTTCTAATTT		atatctataactcaacctctgcttctgagattctaagta		ggtcttccaactcctccattcaagacttaattgac
GTTTAATTTCATCTTCTAATTT		ATATCTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA		GTCTTCCAACTCCTCCATTCAAGACTTAATTGAC
GTTTAATTTCATCTTCTAATTT	GAATCT CGAAGTTGGCA	ATATCTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA	CCTTAGATGCCAAGTACA	gtcttccaactcctccattcaagacttaattgac
GTTTAATTTCATCTTCTAATTT	AGAATCT AAGTTGGCA	ATATCTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA	CCTTAGATGCCAAGTACATT	cttccaactcctccattcaagacttaattgac
gtttaatttcatcttctaattt	gaatcttgcc CA	ATATCTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA	CCTTAGATGCCAAGTACATTACTATAA	cttccaactcctccattcaagacttaattgac
GTTTAATTTCATCTTCTAATTT	GAATCTTGCCA	CTATAACTCAACCTCTGCTTCTGAGATTCTAAGTA	CCTTAGATGCCAAGTACATTACTATAATTG	GTG CTTCCAACTCCTCCATTCAAGACTTAATTGAC
GTTTAATTTCATCTTCTAATTT	AGAATCTTGCCAA	cttctgagattctaagta	ccttagatgccaagtacattactataattg	gtgttatcgggtcttccaac CTCCATTCAAGACTTAATTGAC
gtttaatttcatcttctaattt	gaatcttgccaatcaagcc		accttagatgccaagtacattactataattg	
GTTTAATTTCATCTTCTAATTT	AGAATCTTGCCAATCAAGCC	cttctgagattctaagta	accttagatgccaagtacattactataattg	gtgttatcgggtcttccaac tccattcaagacttaattgac
gtttaatttcatcttctaattt	agaatcttgccaatcaagccc	ttctgagattctaagta	accttagatgccaagtacattactataattg	gtgttatcgggtcttccaact tccattcaagacttaattgac
GTTTAATTTCATCTTCTAATTT	AGAATCTTGCCAATCAAGCCC	tgagattctaagta	ccttagatgccaagtacattactataattg	gtgttatcgggtcttccaactcc ccattcaagacttaattgac
	AGAATCTTGCCAATCAAGCCCTC	tgagattctaagte	ccttagatgccaagtacattactataattg	gtgttatcgggtcttccaactcct cattcaagacttaattgac
	AGAATCTTGCCAATCAAGCCCTCTCGAAG	tgagattctaagta	accttagatgccaagtacattactataattg	gtgttatcgggtcttccaactcct tcaagacttaattgac
	AGAATCTTGCCAATCAAGCCCTCTCGAAG		accttagatgccaagtacattactataattg	gtgttatcgggtcttccaactcctc AAGACTTAATTGAC
	AGAATCTTGCCAATCAAGCCCTCTCGAAGTTGGCA		accttagatgccaagtacattactataattg	
TTCATCTTCTAATTT	AGAATCTTGCCAATCAAGCCCTCTCGAAGTTGGCA	ATATCTATAACTCAACCT AGATTCTAAGT	ACCTTAGATGCCAAGTACATTACTATAATTG	GTGTTATCGGGTCTTCCAACTCCTCC attgac
		gattctaagta	accttagatgccaagtacattactataattg	gtgttatcgggtcttccaactcctcca
			accttagatgccaagtacattactataattg	
			accttagatgccaagtacattactataattg	
		aagta	ccttagatgccaagtacattactataattg	gtgttatcgggtcttccaactcctccattcaag
				cttccaactcctccattcaagacttaattgac
				TTCCAACTCCTCCATTCAAGACTTAATTGAC
				TCCAACTCCTCCATTCAAGACTTAATTGAC
				caactcctccattcaagacttaattgac
				caactcctccattcaagacttaattgac
				aactcctccattcaagacttaattgac
				aactcctccattcaagacttaattgac
				tccattcaagacttaattgac
				ccattcaagacttaattgac

Visualisation • IGV

human_cancer_fusi		NOTCH1-	NUP214		\$ NO	тсн	1-NUP214:7	3,649-91,059	Go	₫ •	► Q	>	X		-			+
	- 4 74 kb 	1	76 kb 	1	78 kb 	1	80 kb 		7 kb		4 kb 	1	86 kb 	1	88 kb I		90 kb 	
normal_breast.tophat2.bam																		

🔒 IGV, UCSC Genome Browser

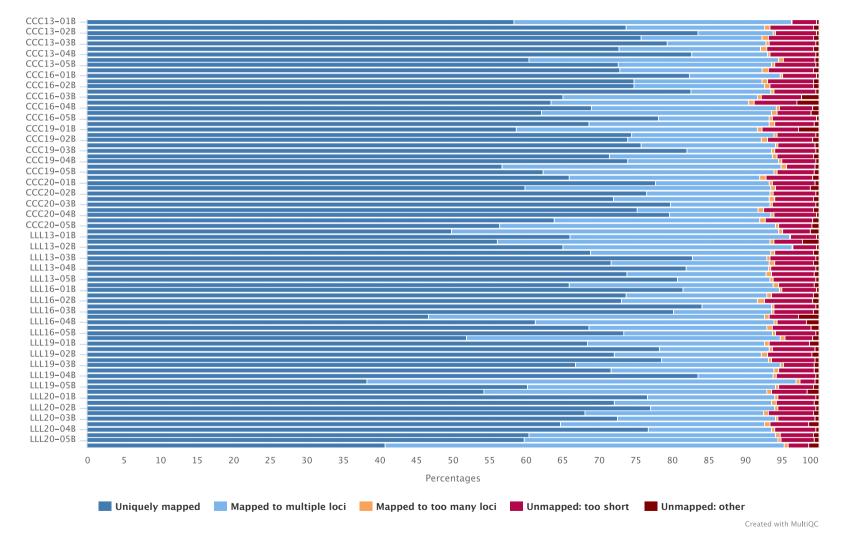
Visualisation • SeqMonk

10 1 🖣 🔶		D M B	1 🔶 📢		; †	?	e					.3arogs.sr										
omo sapiens GRCN37 Annotation Sets Data Sets Data Groups Replicate Sets sobe Lints	1 2 4 5 6 7 8 9			•						hramas	omes in P	Homo Liipi	era GRCh	37 isseni	bły I			-				-
	11						н	lomo sapi	iens GRCI	h37 chv1	4634677	75-48903	31 (2.55)	(tediv								
															1							
	-					***	H	IF	-#1		HL		1			Ħ	HH 1		HI	44	H	R
						H			-					CMPR1-0	201						H	R
																						-
• 11 · ·						1		1.									T				 	-
									i													
						"				1												
									i													
							1	Γ	ŋ								1		 1			-
A: CMPK1-001 477		e)		-		_	_	_	_			0.0100			 					 	ļ

📥 SeqMonk

Alignment QC

- Number of reads mapped/unmapped/paired etc
- Uniquely mapped
- Insert size distribution
- Coverage
- Gene body coverage
- Biotype counts / Chromosome counts
- Counts by region: gene/intron/non-genic
- Sequencing saturation
- Strand specificity


STAR (final log file), samtools > stats, bamtools > stats, QoRTs, RSeQC, Qualimap

Alignment QC • STAR Log

MultiQC can be used to summarise and plot STAR log files.

STAR Alignment Scores

Alignment QC • Features

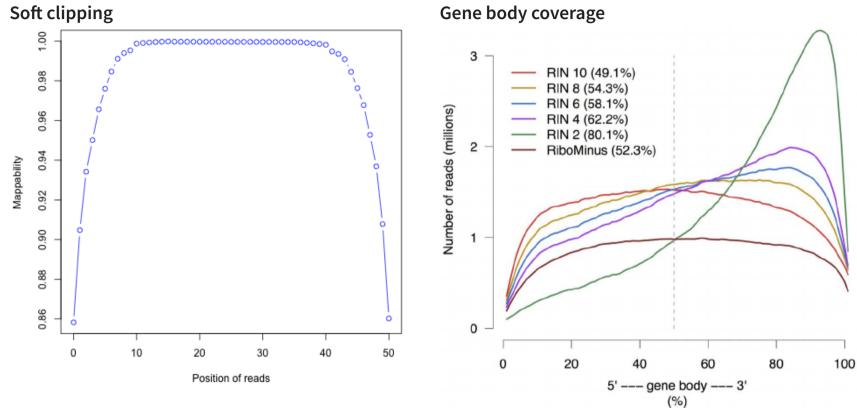
QoRTs was run on all samples and summarised using MultiQC.

CCC13-01B-gorts CCC13-02T-qorts CCC13-04B-gorts CCC13-05T-qorts CCC16-02B-qorts CCC16-03T-qorts CCC16-05B-qorts CCC19-01T-gorts CCC19-03B-qorts CCC19-04T-qorts CCC20-01B-qorts CCC20-02T-gorts CCC20-04B-qorts CCC20-05T-qorts LLL13-02B-qorts LLL13-03T-qorts LLL13-05B-gorts LLL16-01T-gorts LLL16-03B-qorts LLL16-04T-qorts LLL19-01B-qorts LLL19-02T-qorts LLL19-04B-gorts LLL19-05T-gorts LLL20-02B-gorts LLL20-03T-gorts LLL20-05B-qorts 10 20 30 40 50 60 70 80 90 0 100 Percentages

QoRTs: Alignment Locations

Unique Gene: CDS
 Unique Gene: UTR
 Ambig Gene
 No Gene: Intron
 No Gene: One Kb From Gene
 No Gene: Ten Kb From Gene
 No Gene: Middle Of Nowhere

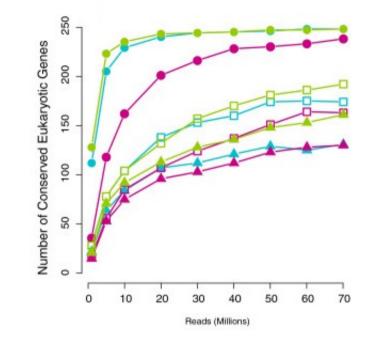
Created with MultiQC


QoRTs

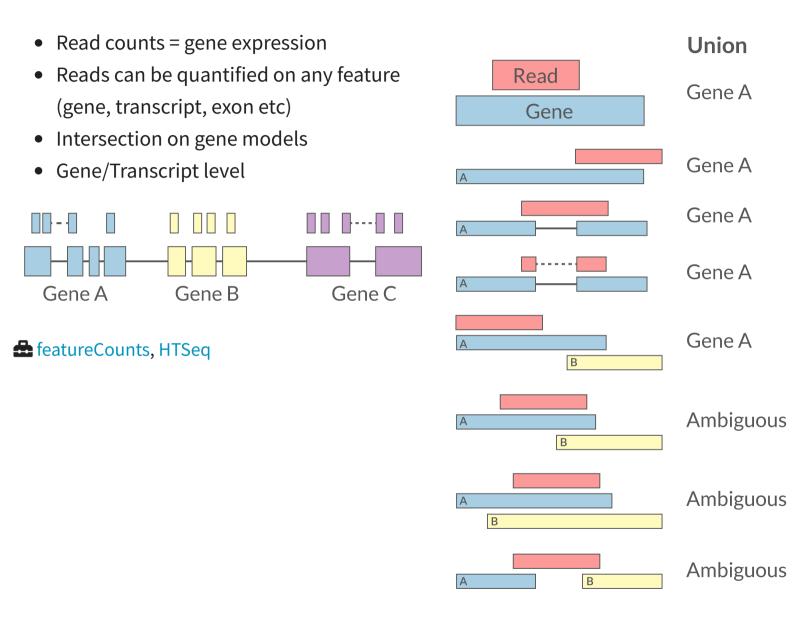
Alignment QC

Gene body coverage

Alignment QC



 $\mathsf{Mean=60;SD=52}$


Inner distance (bp)

Saturation curve

Quantification • Counts

Quantification


NB SciLifeLab

PCR duplicates

- Ignore for RNA-Seq data
- Computational deduplication (Don't!)
- Use PCR-free library-prep kits
- Use UMIs during library-prep

Multi-mapping

- Added (BEDTools multicov)
- Discard (featureCounts, HTSeq)
- Distribute counts (Cufflinks)
- Rescue
 - Probabilistic assignment (Rcount, Cufflinks)
 - Prioritise features (Rcount)
 - Probabilistic assignment with EM (RSEM)

🔗 Klepikova, Anna V., et al. "Effect of method of deduplication on estimation of differential gene expression using RNA-seq." PeerJ 5 (2017): e3091

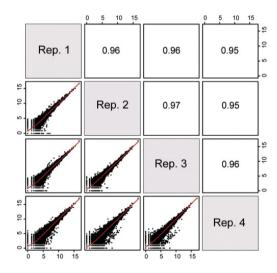
Parekh, Swati, et al. "The impact of amplification on differential expression analyses by RNA-seq." Scientific reports 6 (2016): 25533

Quantification • Abundance

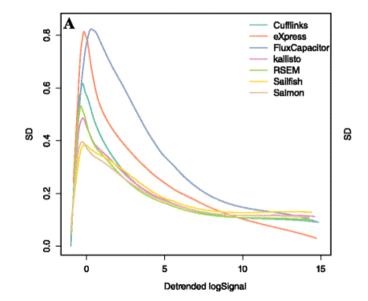
- Count methods
 - Provide no inference on isoforms
 - Cannot accurately measure fold change
- Probabilistic assignment
 - Deconvolute ambiguous mappings
 - Transcript-level
 - cDNA reference

Kallisto, Salmon

- Ultra-fast & alignment-free
- Subsampling & quantification confidence
- Transcript-level estimates improves gene-level estimates
- Kallisto/Salmon > transcript-counts > tximport() > gene-counts


🖶 RSEM, Kallisto, Salmon, Cufflinks2

Quantification QC



ENSG0000000003 ENSG0000000005 ENSG00000000419 ENSG00000000457 ENSG00000000460 ENSG00000000938 ENSG00000000971	140 0 56 33 7 545	242 0 98 75 27 38 878	188 0 77 104 23 13 694	143 0 55 79 19 17 636	287 0 52 157 27 35 647	344 0 94 205 42 76 216	438 0 116 183 69 53 492	280 0 79 178 44 37 798	253 0 69 153 40 24 323
ENSG00000000971	545	878	694	636	647	216	492	798	323
ENSG00000001036	79	154	74	80	128	167	220	147	72

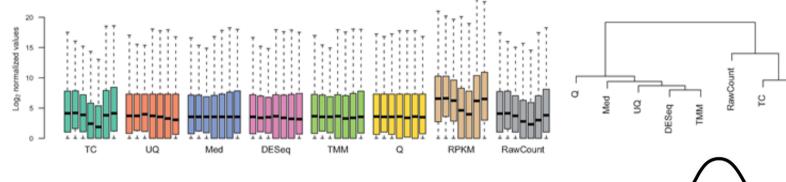
• Pairwise correlation between samples must be high (>0.9)

• Count QC using RNASeqComp

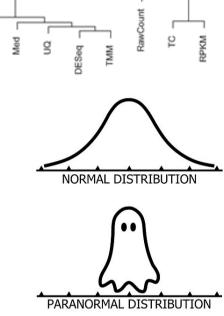
RNASeqComp

Teng, Mingxiang, et al. "A benchmark for RNA-seq quantification pipelines." Genome biology 17.1 (2016): 74

MultiQC



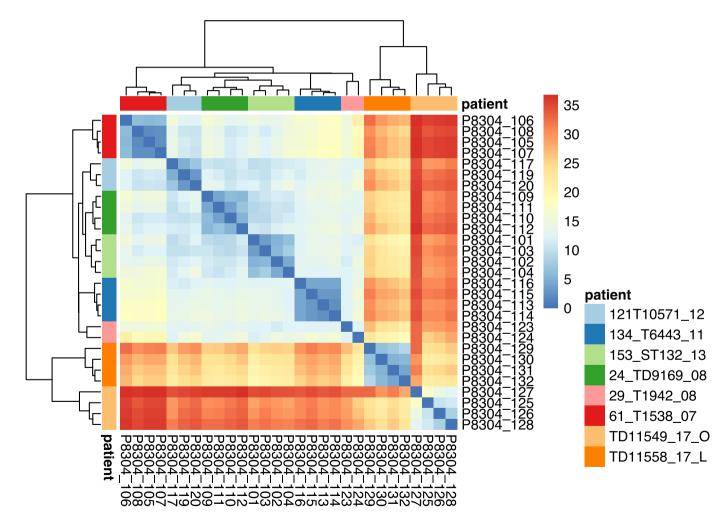
MultiQC v1.6	Mu	lti€	C							
General Stats										
featureCounts		A modular tool to aggregate results from bioinformatics analyses across many samples into a single report.								
STAR	Report generated	on 2018-08-04	. 01:51 based on	data in: /Users	/ewels/GitHub	/MultiOC websit	e/public ht	tml/exampl	es/rna-seq	
Cutadapt			,	,	,,,	, <u>.</u>		,	,	_
FastQC	General	Statisti	CS							
Sequence Counts	Gopy table	III Configure Colu	ımns 📕 Plot	Showing 8/8 rows	and 8/10 columns).				
Sequence Quality Histograms	Sample Name	% Assigned		% Aligned	MAligned	% Trimmed	% Dups	% GC	M Seqs	
Per Sequence Quality Scores	SRR3192396	67.5%	71.9	93.7%	97.8	4.0%	78.9%	51%	104.4	
Per Base Sequence Content	SRR3192397	66.6%	63.0	94.7%	87.1	3.5%	77.2%	49%	92.0	
Per Sequence GC Content	SRR3192398	50.9%	36.5	88.2%	58.7	5.0%	55.3%	47%	66.6	
Per Base N Content						-				
Sequence Length Distribution	SRR3192399	52.3%	42.3	88.2%	65.6	5.0%	57.4%	47%	74.3	
Sequence Duplication Levels	SRR3192400	70.3%	63.4	77.3%	73.4	7.2%	74.1%	45%	94.9	
Overrepresented sequences	SRR3192401	71.2%	63.8	76.4%	72.8	6.3%	76.3%	45%	95.2	
Adapter Content	SRR3192657	73.1%	67.1	91.2%	85.0	3.1%	82.2%	51%	93.1	
	SRR3192658	71.2%	66.9	89.7%	87.1	3.4%	82.3%	52%	97.1	
						1				


Normalisation

- Control for Sequencing depth & compositional bias
- Median of Ratios (DESeq2) and TMM (edgeR) perform the best

- For DGE using DGE packages, use raw counts
- For clustering, heatmaps etc use VST, VOOM or RLOG
- For own analysis, plots etc, use TPM
- Other solutions: spike-ins/house-keeping genes

Dillies, Marie-Agnes, *et al.* "A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis." Briefings in bioinformatics 14.6 (2013): 671-683

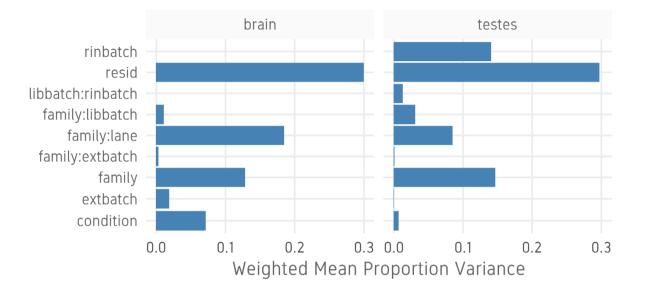

Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions." Briefings in bioinformatics (2017)

Wagner, Gunter P., Koryu Kin, and Vincent J. Lynch. "Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples." Theory in biosciences 131.4 (2012): 281-285

Exploratory • Heatmap

- Remove lowly expressed genes
- Transform raw counts to VST, VOOM, RLOG, TPM etc
- Sample-sample clustering heatmap

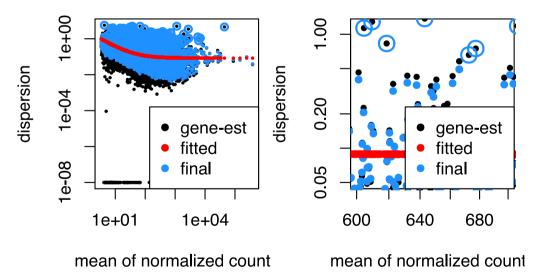
Exploratory • MDS


- 121T10571_12
- 134_T6443_11
- 153_ST132_13
- 24_TD9169_08
- 29_T1942_08
- 61_T1538_07
- TD11549_17_0
- TD11558_17_L

cmdscale(), plotly

Batch correction

• Estimate variation explained by variables (PVCA)



- Find confounding effects as surrogate variables (SVA)
- Model known batches in the LM/GLM model
- Correct known batches (ComBat)(Harsh!)
- Interactively evaluate batch effects and correction (BatchQC)

SVA, PVCA, BatchQC

DGE

- DESeq2, edgeR (Neg-binom > GLM > Test), Limma-Voom (Neg-binom > Voom-transform > LM > Test)
- DESeq2 ~age+condition
 - Estimate size factors estimateSizeFactors()
 - Estimate gene-wise dispersion estimateDispersions()
 - Fit curve to gene-wise dispersion estimates
 - Shrink gene-wise dispersion estimates
 - GLM fit for each gene
 - Wald test nbinomWaldTest()

🖶 DESeq2, edgeR, Limma-Voom

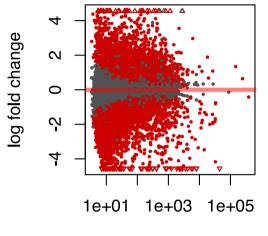
Seyednasrollah, Fatemeh, et al. "Comparison of software packages for detecting differential expression in RNA-seq studies." Briefings in bioinformatics 16.1 (2013): 59-70

DGE

• Results results()

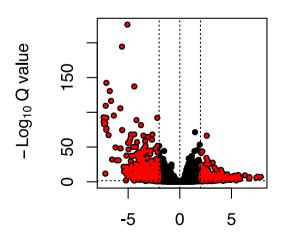
##	log2 fold change (MLE): type type2 vs control
##	Wald test p-value: type type2 vs control
##	DataFrame with 1 row and 6 columns
##	baseMean log2FoldChange lfcSE
##	<numeric> <numeric> <numeric></numeric></numeric></numeric>
##	ENSG000000003 242.307796723287 -0.93292608960856 0.11428515031257
##	stat pvalue
##	<numeric> <numeric></numeric></numeric>
##	ENSG0000000003 -8.16314356727017 3.26416150297406e-16
##	padj
##	<numeric></numeric>
##	ENSG000000003 1.36240610021329e-14

• Summary summary()

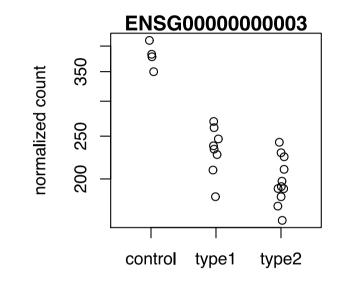

##

out of 17889 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4526, 25%
LFC < 0 (down) : 5062, 28%
outliers [1] : 25, 0.14%
low counts [2] : 0, 0%
(mean count < 3)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>

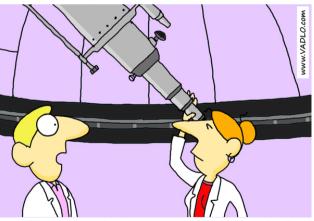
DGE

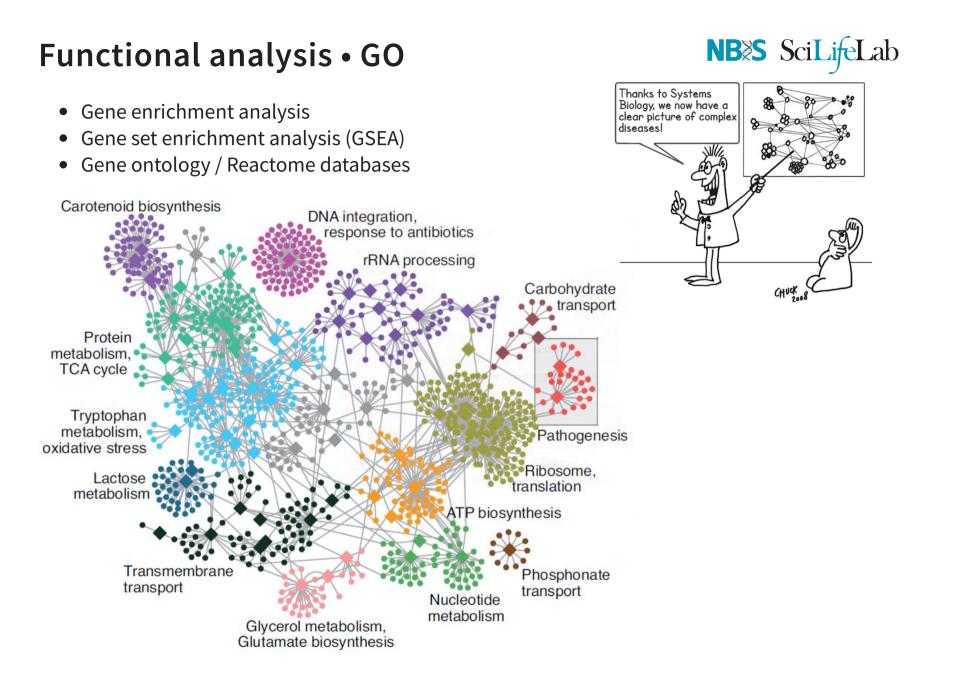

NBXS SciLifeLab

• MA plot plotMA()

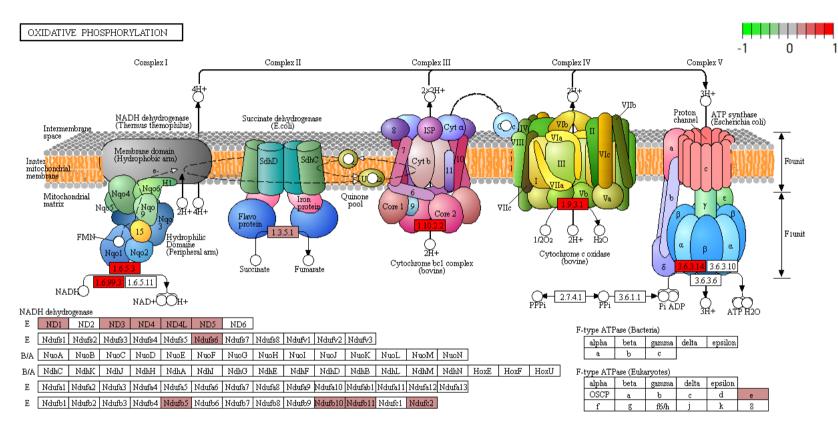


mean of normalized coun


• Volcano plot


Normalised counts plotCounts()

group


"Can you see the upper points of my scatter plot?"

Functional analysis • Kegg

• Pathway analysis (Kegg)

DAVID, clusterProfiler, ClueGO, ErmineJ, pathview

Summary

- Sound experimental design to avoid confounding
- Plan carefully about lib prep, sequencing etc based on experimental objective
- Biological replicates may be more important than paired-end reads or long reads
- Discard low quality bases, reads, genes and samples
- Verify that tools and methods align with data assumptions
- Experiment with multiple pipelines and tools
- QC! QC everything at every step

• Conesa, Ana, *et al.* "A survey of best practices for RNA-seq data analysis." Genome biology 17.1 (2016): 13

Thank you. Questions?

Also: Thanks to Roy Francis for the presentation

R version 3.5.2 (2018-12-20) Platform: x86_64-apple-darwin15.6.0 (64-bit) OS: macOS High Sierra 10.13.6

Built on : 22-May-2019 at (23:53:42) 2019 • SciLifeLab • NBIS

Hands-On tutorial

NBES SciLifeLab

Main exercise

- 01 Check the quality of the raw reads with FastQC
- 02 Map the reads to the reference genome using **Star**
- 03 Assess the post-alignment quality using QualiMap
- 04 Count the reads overlapping with genes using featureCounts
- 05 Find DE genes using edgeR in R

Bonus exercises

- 01 Functional annotation of DE genes using GO/Reactome/Kegg databases
- 02 Visualisation of RNA-seq BAM files using IGV genome browser
- 03 RNA-Seq figures and plots using **R**
- 04 De-novo transcriptome assembly using **Trinity**

Data: /sw/courses/ngsintro/rnaseq/

Work: /proj/g2019007/nobackup/<user>/rnaseq/

Hands-On tutorial

• Course data directory

/sw/courses/ngsintro/rnaseq/

rnaseq/ +-- bonus/ +-- assembly/ +-- exon/ +-- funannot/ +-- visual/ +-- documents/ +-- main/ +-- 1 raw/ +-- 2_fastqc/ +-- 3 mapping/ +-- 4_qualimap/ +-- 5_dge/ +-- 6_multiqc/ +-- reference/ +-- mouse/ +-- mouse_chr11/ +-- scripts/

NBES SciLifeLab

• Your work directory

/proj/g2019007/nobackup/[user]/

```
[user]/
rnaseq/
+-- 1_raw/
+-- 2_fastqc/
+-- 3_mapping/
+-- 4_qualimap/
+-- 5_dge/
+-- 6_multiqc/
+-- reference/
| +-- mouse/
| +-- mouse/
| +-- mouse_chr11/
+-- scripts/
+-- funannot/
+-- assembly/
```