
Introduction to R programming – a SciLife Lab
course

Marcin Kierczak with Thomas Källman (labs)

22 March 2017

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

What R really is?

a programming language,
a programming platform (= environment + interpreter),
a software project driven by the core team and the community.

And more:

a very powerful tool for statistical computing,
a very powerful computational tool in general,
a catalyst between an idea and its realization.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

What R is not?

a tool to replace a statistician,
the very best programming language,
the most elegant programming solution,
the most efficient programming language.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

A brief history of R

conceived c.a. 1992 by Robert Gentleman and Ross Ihaka
(R&R) at the University of Auckland, NZ – a tool for teaching
statistics,
1994 – initial version,
2000 – stable version.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician)
https://en.wikipedia.org/wiki/Ross_Ihaka

A brief history of R cted.

open-source solution –> fast development,
based on the S language created at the Bell Labs by John
Chambers to turn ideas into software, quickly and faithfully,
inspired also by Lisp syntax (lexical scope),
since 1997 developed by the R Development Core Team (~20
(6) experts, with Chambers onboard),
overviewed by The R Foundation for Statistical Computing,
learn more

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

https://en.wikipedia.org/wiki/S_(programming_language)
https://en.wikipedia.org/wiki/Lisp
https://en.wikipedia.org/wiki/R_(programming_language)

The system of R packages – an overview

developed by the community,
cover several very diverse areas of science/life,
uniformely structured and documented,
organised in repositiries:

CRAN - The Comprehensive R Archive Network,
R-Forge,
Bioconductor,
GitHub.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

https://cran.r-project.org
https://r-forge.r-project.org
http://www.bioconductor.org
https://github.com

R packages in the main repos
N

o.
 p

ac
ka

ge
s

20
11

−0
5−

17

20
11

−1
1−

22

20
12

−0
4−

25

20
13

−0
7−

11

20
13

−0
9−

24

20
16

−0
8−

31

20
17

−0
3−

22

2984

3429

3745

4689
4846

9066

10312

998
1182 1274

1584 1631

2024 2048

460 516 554
671 671

1211 1296

CRAN
R−forge
Bioconductor

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

Advantages of using R

a very powerful ecosystem of packages,
uniform, clear and clean system of documentation and help,
good interconnectivity with compiled languages like Java or C,
free and open source, GNU GPL and GNU GPL 2.0,
easy to generate high quality graphics.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

Disadvantages of R

steep learning curve,
sometimes slow,
difficulties due to a limited object-oriented programming
capabilities, e.g. an agent-based simulation is a challenge,
cannot make a perfect espresso for you :-).

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

What a programming language is

A programming language is a formal computer language
or constructed language designed to communicate
instructions to a machine, particularly a computer.
Programming languages can be used to create programs
to control the behavior of a machine or to express
algorithms.[source: Wikipedia]

We talk about the:
the syntax – the form and
the semantics – the meaning of a programming language.

Languages can be of two major kinds:
imperative – a set of step-by-step instructions (R),
declarative – a clearly defined goal.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

Programming paradigms

There many programming paradigms ~= styles of programming,
e.g.:

imperative:
literate (R, knitr, Sweavy, R Markdown),
procedural (R - functions),
. . .

declarative:
functional (R, λ-abstraction),
. . .

agent-oriented,
structured:

object-oriented (R, S3 and S4 classes),
. . .

. . .

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

https://en.wikipedia.org/wiki/Programming_paradigm

Interpreted vs. compiled languages

Computers understand the machine code not programming
languages!
Machine code is what the processor (CPU) understands.
Every computer language code has to be in some ways turned
into the machine code.

Two major approaches exist to turn code in a particular language to
the machine code:

Interpretation – on-the-fly translation of your code,
theoretically line-by-line. This is done every time you run your
program and the job is done by a software called an
interpreter.
Compilation – your program is translated and saved as a
machine code and as such can be directly executed on the
machine. The job is performed by a compiler.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

https://en.wikipedia.org/wiki/Machine_code

Elements of a programming language

Think of a program as a flow of data from one function to another
that does something to the data. There are three main things that
define a programming language:

type system – definition of legal types of data,
syntax – the form defined by the grammar,
semantics – the meaning.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

The syntax

Syntax is the form, defined by, typically Chomsky II ==
context-free, grammar like:

2 * 1 + 1
(+ (* 2 1) 1)

Lisp is defined by the following grammar (BNF or Bakus-Naur
Form):

expression ::= atom | list
atom ::= number | symbol
number ::= [+-]?['0'-'9']+
symbol ::= ['A'-'Z''a'-'z'].*
list ::= '(' expression* ')'

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

https://en.wikipedia.org/wiki/Context-free_grammar

The semantics

Semantics is the meaning, a gramatically correct sentence does not
necessarily have a proper meaning:

“Colorful yellow train sleeps on a crazy wave.” – has no
generally accepted meaning.
“There is $500 on his empty bank acount.” – cannot evaluate
to true.
Static semantics – in compiled languages, e.g. checking that
every identifier is declared before the first use or that the
conditionals have distinct predicates.
Dynamic semantics – how the chunks of code are executed.
For instance lazy vs. eager evaluation.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

The type system

Typed vs. untyped languages.
1 - integer
1.0 - float
“1.0” - string

Static vs. dynamic typing.
Static - type determined before execution, declared by the
programmer (manifestly-typed) or checked by the compiler
(type-inferrred) earlier:
integer i # Declaration
i = 1 # Initialization
Dynamic - type determined when executing.

Weak vs. strong types.
Weak - 1 can be either an int 1 or a string “1”
Strong - types cannot change.

Types – ERROR checking!
Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

A more formal description of R

Interpreted – it is every time translated by the interpreter.
Dynamically typed – you do not declare types.
Multi-paradigm:

array – works on multi-dimensional data structures, like vectors
or matrices,
functional – treats computation as evaluation of math functions,
imperative – the programmer specifies how to solve the problem,
object-oriented – allows working with objects: data + things
you can do to the data,
procedural – structure is organised in procedures and procedure
calls, e.g. functions and
reflective – the code can modify itself in runtime.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

So how to program?

Divide et impera – Divide and rule.

Top-down approach: define the big problem and split it into
smaller ones. Assume you have solution to the small problems and
continue – push the responsibility down. Wishful thinking!

You've got a csv file that contains data about people:
year of birth, favorite music genre and the name of
a pet if the person has one and salary. Your task is
to read the data and, for people born in particular
decades (..., 50-ties, 60-ties, ...), compute the
mean and the variance salary and find the most
frequent pet name.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

Problem decomposition 1

This task can be decomposed into:

read data from csv file,
split the data into age classes based on the decade of birth,
compute the mean and the variance salary per class,
find the most frequent pet name per class.

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

Problem decomposition 2

To compute an the mean you have to: sum all values, divide the
sum by the number of values – simple enough, we can program it
right away.

To compute the variance you need to first refresh the formula:

V ar(X) = 1
n

Σn
i=1(xi − x̄)2

Thus, you realise that you need to compute the mean, but you know
how to do this from the previous point. So, instead of coding
computation of the mean twice, make a function that you can
reuse! Lazines is the major driving force of a programmer!

Let’s put it down!

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

Pseudocode 1

V ar(X) = 1
n

Σn
i=1(xi − x̄)2

Task: create the computeMean procedure that computes the mean
for a sequence of numbers
Input: a sequence of numbers, e.g.: {1, 4, 5.7, 42357.533, 42}.
Wait, isn’t it a vector?
Output: the computed mean, a single number, that is what we
want our procedure to return.

function computeMean(aVector) {
sum = sum all numbers in aVector
count = count how many numbers are in aVector
theMean is: sum / count
return theMean

}

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

Pseudocode 2

function computeMean(aVector) {
sum = 0
for every number n in aVector {

sum = sum + n
}
count = count how many numbers are in aVector
theMean is: sum / count
return theMean

}

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

Pseudocode 3

But we realise that we can do counting in the same loop as addition:

function computeMean(aVector) {
sum = 0
count = 0
for every number n in aVector {

sum = sum + n
count = count + 1

}
theMean is: sum / count
return theMean

}

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

Pseudocode 3
Returning to our initial task of computing variance:

V ar(X) = 1
n

Σn
i=1(xi − x̄)2

function computeVariance(aVector) {
sumOfSq = 0
count = 0
mean = computeMean(aVector)
for every number n in aVector {

sumOfSq = sumOfSq + square((n - mean))
count = count + 1

}
variance = sumOfSq / count
return variance

}

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

Pseudocode 4

Please note, that we do not care about writing a function for
addition, it is fixed for us by the ‘+’ operator. Languages differ in
what is already available at hand. In R, we have a ready function for
computing variance: var(x).

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

Summary

So far, we have learnt about:

what R is and what it is not,
history of R,
the system of packages,
advantages and disadvantages of the language,
definition of a programing language,
elements of a programing language (types, syntax and
semantics),
programing paradigms,
wishful thinking,
problem decomposition,
pseudocode.

Quite a bit, right?

Marcin Kierczak with Thomas Källman (labs) Introduction to R programming – a SciLife Lab course

