
Elements of a programming language – 4

Marcin Kierczak

23 October 2016

Marcin Kierczak Elements of a programming language – 4

Marcin Kierczak Elements of a programming language – 4

Contents of the lecture

variables and their types
operators
vectors
numbers as vectors
strings as vectors
matrices
lists
data frames
objects
repeating actions: iteration and recursion
decision taking: control structures
functions in general
variable scope
base functions

Marcin Kierczak Elements of a programming language – 4

Repeating actions

In several algorithms, the point is to repeat certain action several
times. In a mathematical formulas language, we have for instance
the following signs for repeating an action:

Σn
i=1(expression)

which denotes addition over elements with indices 1...n or

Πn
i=1(expression)

which denotes multiplication.

It is important to learn how to translate these (and similar) formulas
into the R language.

Marcin Kierczak Elements of a programming language – 4

Repeating actions – for loop

One way to repeat an action is to use the for-loop

for (i in 1:5) {
cat(paste('Performing operation no.', i), '\n')

}

Performing operation no. 1
Performing operation no. 2
Performing operation no. 3
Performing operation no. 4
Performing operation no. 5

Marcin Kierczak Elements of a programming language – 4

Repeating actions – for loop cted.

A slight modification of the above example will skip odd indices.

for (i in c(2,4,6,8,10)) {
cat(paste('Performing operation no.', i), '\n')

}

Performing operation no. 2
Performing operation no. 4
Performing operation no. 6
Performing operation no. 8
Performing operation no. 10

Marcin Kierczak Elements of a programming language – 4

Repeating actions – for loop external counter

Sometimes, we also want an external counter:

cnt <- 1
for (i in c(2,4,6,8,10)) {

cat(paste('Performing operation no.', cnt,
'on element', i), '\n')

cnt <- cnt + 1
}

Performing operation no. 1 on element 2
Performing operation no. 2 on element 4
Performing operation no. 3 on element 6
Performing operation no. 4 on element 8
Performing operation no. 5 on element 10

Marcin Kierczak Elements of a programming language – 4

Repeating actions – for loop an example

Say, we want to add 1 to every element of a vector:

vec <- c(1:5)
vec

[1] 1 2 3 4 5

for (i in vec) {
vec[i] <- vec[i] + 1

}
vec

[1] 2 3 4 5 6

Marcin Kierczak Elements of a programming language – 4

Repeating actions – avoid loops and vectorize!
The above can be achieved in R by means of vectorization:

vec <- c(1:5)
vec + 1

[1] 2 3 4 5 6

Let us compare the time of execution of the vectorized version
(vector with 10,000 elements):

user system elapsed
0.034 0.003 0.037

to the loop version:

user system elapsed
1.068 0.018 1.091

Marcin Kierczak Elements of a programming language – 4

Repeating actions – the while loop

There is also another type of loop inR, the while loop which is
executed until some condition is true.

x <- 1
while (x < 5) {

cat(x, " ... ")
x <- x + 1

}

1 ... 2 ... 3 ... 4 ...

Marcin Kierczak Elements of a programming language – 4

Recursion

When we explicitely repeat an action using a loop, we talk about
iteration. We can also repeat actions by means of recursion,
i.e. when a function calls itself. Let us implement a factorial !:

factorial.rec <- function(x) {
if (x == 0 || x == 1)

return(1)
else

return(x * factorial.rec(x - 1)) # Recursive call!
}
factorial.rec(5)

[1] 120

Marcin Kierczak Elements of a programming language – 4

Recursion = iteration?
Yes, every iteration can be converted to recursion (Church-Turing
conjecture) and vice-versa. It is not always obvious, but theoretically
it is doable. Let’s see how to implement factorial in iterative
manner:

factorial.iter <- function(x) {
if (x == 0 || x == 1)

return(1)
else {

tmp <- 1
for (i in 2:x) {

tmp <- tmp * i
}
return(tmp)

}
}
factorial.iter(5)

[1] 120
Marcin Kierczak Elements of a programming language – 4

Recursion == iteration, really?
More writing for the iterative version, right? What about the time
efficiency?
The recursive version:

[1] 2.432902e+18

user system elapsed
0.002 0.000 0.002

And the iterative one:

[1] 2.432902e+18

user system elapsed
0.002 0.000 0.002

Marcin Kierczak Elements of a programming language – 4

Loops – void growing data

Avoid changing dimensions of an object inside the loop:

v <- c() # Initialize
for (i in 1:100) {

v <- c(v, i)
}

It is much better to do it like this:

v <- rep(NA, 100) # Initialize with length
for (i in 1:100) {

v[i] <- i
}

Always try to know the size of the object you are going to create!

Marcin Kierczak Elements of a programming language – 4

Decision taking – an if clause

Often, one has to take a different course of action depending on a
flow of the algorithm. You have already seen the if-else block. Let’s
print only odd numbers [1, 10]:

v <- 1:10
for (i in v) {

if (i %% 2 != 0) { # if clause
cat(i, ' ')

}
}

1 3 5 7 9

Marcin Kierczak Elements of a programming language – 4

Decision taking – if-else

If we want to print ‘o’ for an odd number and ‘e’ for an even, we
could write either:

v <- 1:10
for (i in v) {

if (i %% 2 != 0) { # if clause
cat('o ')

}
if (i %% 2 == 0) { # another if-clause

cat('e ')
}

}

o e o e o e o e o e

Marcin Kierczak Elements of a programming language – 4

Decision taking – if-else

or

v <- 1:10
for (i in v) {

if (i %% 2 != 0) { # if clause
cat('o ')

} else { # another if-clause
cat('e ')

}
}

o e o e o e o e o e

Marcin Kierczak Elements of a programming language – 4

Decision taking – if-else

or else

v <- 1:10
for (i in v) {

tmp <- 'e ' # set default to even
if (i %% 2 != 0) { # if clause

tmp <- 'o ' # change default for odd numbers
}
cat(tmp)

}

o e o e o e o e o e

Each three are ways are good and are mainly the matter of style. . .

Marcin Kierczak Elements of a programming language – 4

Decision taking – more alternatives
So far, so good, but we were only dealing with 3 alternatives. Let’s
say that we want to print ‘?’ for zero, ‘e’ for even and ‘o’ for an odd
number:

v <- 0:10
for (i in v) {

if (i == 0) {
cat('? ')

} else if (i %% 2 != 0) { # if clause
cat('o ')

} else { # another if-clause
cat('e ')

}
}

? o e o e o e o e o e

Congratulations! You have just learned the if-else if-else clause.
Marcin Kierczak Elements of a programming language – 4

Switch
If-else clauses operate on logical values. What if we want to take
decisions based on non-logical values? Well, if-else will still work by
evaluating a number of comparisons, but we can also use switch:

switch.demo <- function(x) {
switch(class(x),

logical = ,
numeric = cat('Numeric or logical.'),
factor = cat('Factor.'),
cat('Undefined')
)

}
switch.demo(x=TRUE)

Numeric or logical.

switch.demo(x=15)

Numeric or logical.

switch.demo(x=factor('a'))

Factor.

switch.demo(data.frame())

Undefined

Marcin Kierczak Elements of a programming language – 4

Functions 1
Often, it is really handy to re-use some code we have written or to
pack together the code that is doing some task. Functions are a
really good way to do this in R:

add.one <- function(arg1) {
arg1 <- arg1 + 1
return(arg1)

}
add.one(1)

[1] 2

add.one()

Error in add.one(): argument "arg1" is missing, with no default

Marcin Kierczak Elements of a programming language – 4

Anatomy of a function
A function consists of: formal arguments, function body and
environment:

formals(ecdf)

$x

body(plot.ecdf)

{
plot.stepfun(x, ..., ylab = ylab, verticals = verticals,
pch = pch)
abline(h = c(0, 1), col = col.01line, lty = 2)
}

environment(ecdf)

<environment: namespace:stats>
Marcin Kierczak Elements of a programming language – 4

Functions – default values
Sometimes, it is good to use default values for some arguments:

add.a.num <- function(arg, num=1) {
arg <- arg + num
return(arg)

}
add.a.num(1, 5)

[1] 6

add.a.num(1) # skip the num argument?

[1] 2

add.a.num(num=1) # skip the num argument?

Error in add.a.num(num = 1): argument "arg" is missing, with no default
Marcin Kierczak Elements of a programming language – 4

Functions – order of arguments

args.demo <- function(x, y, arg3) {
print(paste('x =', x, 'y =', y, 'arg3 =', arg3))

}
args.demo(1,2,3)

[1] "x = 1 y = 2 arg3 = 3"

args.demo(x=1, y=2, arg3=3)

[1] "x = 1 y = 2 arg3 = 3"

args.demo(x=1, 2, 3)

[1] "x = 1 y = 2 arg3 = 3"

args.demo(a=3, x=1, y=2)

[1] "x = 1 y = 2 arg3 = 3"Marcin Kierczak Elements of a programming language – 4

Functions – order of arguments 2

args.demo2 <- function(x, arg2, arg3) {
print(paste('x =', x, 'arg2 =', arg2, 'arg3 =', arg3))

}
args.demo2(x=1, y=2, ar=3)

Error in args.demo2(x = 1, y = 2, ar = 3): argument 3 matches multiple formal arguments

Marcin Kierczak Elements of a programming language – 4

Functions – variables scope

Functions ‘see’ not only what has been passed to them as
arguments:

x <- 7
y <- 3
xyplus <- function(x) {

x <- x + y
return(x)

}
y <- xyplus(x)
y

[1] 10

Marcin Kierczak Elements of a programming language – 4

Functions – variables scope cted.
Everything outside the function is called global environment.
There is a special operator for working on global environment from
within a function:

x <- 1
xplus <- function(x) {

x <<- x + 1
}
xplus(x)
x

[1] 2

xplus(x)
x

[1] 3

This should be used with caution!Marcin Kierczak Elements of a programming language – 4

Functions – the dot-dot-dot argument
There is a special argument . . . (ellipsis) which allowes you to give
any number of arguments or pass arguments downstream:

c # Any number of arguments

function (..., recursive = FALSE) .Primitive("c")

my.plot <- function(x, y, ...) { # Passing downstream
plot(x, y, las=1, cex.axis=.8, ...)

}
my.plot(1,1)

0.6 0.8 1.0 1.2 1.4

0.6

0.8

1.0

1.2

1.4

x

y

my.plot(1, 1, col='red', pch=19)

0.6 0.8 1.0 1.2 1.4

0.6

0.8

1.0

1.2

1.4

x

y

BTW!
A function enclosing a function is a wrapper function

Marcin Kierczak Elements of a programming language – 4

Functions – the dot-dot-dot argument trick
What if the authors of, e.g. plot.something wrapper forgot about
the dot-dot-dot?

my.plot <- function(x, y) { # Passing downstrem
plot(x, y, las=1, cex.axis=.8, ...)

}
formals(my.plot) <- c(formals(my.plot), alist(... =))
my.plot(1, 1, col='red', pch=19)

0.6 0.8 1.0 1.2 1.4

0.6

0.8

1.0

1.2

1.4

x

y

Marcin Kierczak Elements of a programming language – 4

Lazy evaluation

In R, arguments are evaluated as late as possible, i.e. when they are
needed. This is lazy evaluation:

h <- function(a = 1, b = d) {
d <- (a + 1) ^ 2
c(a, b)

}
h()

[1] 1 4

The above won’t be possible in, e.g. C where values of both
arguments have to be known before calling a function eager
evaluation.

Marcin Kierczak Elements of a programming language – 4

In R everything is a function
Because in R everything is a function, we can redefine things:

`+`

function (e1, e2) .Primitive("+")

`+` <- function(e1, e2) { e1 - e2 }
2 + 2

[1] 0

rm("+")
2 + 2

[1] 4

Marcin Kierczak Elements of a programming language – 4

Infix notation

Operators like ‘+’, ‘-’ or ’*’ are using the so-called infix functions,
where the function name is between arguments. We can define our
own:

`%p%` <- function(x, y) {
paste(x,y)

}
'a' %p% 'b'

[1] "a b"

Marcin Kierczak Elements of a programming language – 4

Base functions

When we start R, the following packages are pre-loaded
automatically:

.libPaths() # get library location
library() # see all packages installed
search() # see packages currently loaded

[1] ".GlobalEnv" "package:stats" "package:graphics" "package:grDevices" "package:utils" "package:datasets" "package:methods" "Autoloads" "package:base"

Check what basic functions are offered by packages: base, utils and
we will soon work with package graphics. If you want to see what
statistical functions are in your arsenal, check out package stats.

Marcin Kierczak Elements of a programming language – 4

