RNA-seq Quality Control

Before the analysis begins

asa.bjorklund@scilifelab.se

Enabler for Life Sciences

Stockholm
UPPSALA
University universitet

Overview

- Introduction
- FastQC - read based QC
- RseQC - mapping based QC
- PCA
- Spike-in controls
- Experimental design

Stockholm
UPPSALA UNIVERSITET

SciLifeLab

RNA-seq libraries

What could go wrong?

What could go wrong?

- RNA quality:
- Degradation
- Contaminations (pathogens or other sources)
- GC-bias
- Nuclear vs organellar reads
- Library prep:
- Failed reactions
- RNA / Adapter ratios - primer dimers
- Clonal duplicates
- Chimeric reads
- Contaminations
- Sequencing:
- Base calling errors
- Uncalled bases
- Low quality bases (3' end)
- Contaminations
- Sequence complexity
$\underset{\substack{\text { Roval institute } \\ \text { OF TECHNOLOGY }}}{ }$

From samples to RNA to reads

-might not be what you think they are

- Mixing samples
- 30 samples with 5 steps from samples to reads has 24300 000 potential mix ups of samples
- Error rate 1/ 100 with 5 steps suggest that one of every 20 sample is mislabeled
- Experiments go wrong
- 30 samples with 5 steps from samples to reads has 150 potential steps for errors
- Error rate 1/100 with 5 steps suggest that one of every 20 samples the reads does not represent the sample
- Combine the two steps and approximately one of every 10 samples are wrong

RNA-seq analysis workflow

Stockholm
UPPSALA
University UNIVERSITET

SciLifeLab

Read QC
 - FastQC

reads.fastq.gz
Reads

Mapping statistics

Reference

Mapping QC
 - RseQC

mappedReads.bam
Mapped reads

Gene annotation: ref.bed / ref.gtf

Stockholm
University

Fastq - read file format

Paired end data usually in format sampleX_1.fastq and sampleX_2.fastq with same SEQ_ID for both mate pairs, followed by /1 and / 2 (or _f and _r)

Fastq - read file format

```
    SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
    ЈJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
    LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL
    !"#$$&'()*+,-./0123456789:; ; <>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
    0.........................................40
```



```
        0. . . . . . .9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . }4
        3.....9.................................. . . . }4
    0.2........................................... . 41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
    with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
    (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Stockholm
University
UNIVERSITET

Basic read metrics with FastQC

A program that analyses some of the basic metrics on fastq raw read files.

- Quality
- Length
- Sequence bias
- GC content
- Repeated sequences
- Adapter contamination

```
                                    Code
$ module load bioinfo-tools
$ module load FastQC/0.11.2
$ fastqc -o outdir seqfile.fastq
# multiple files:
$ fastqc -o outdir seqfile_*.fastq
```

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Stockholm
University

FastQC report

RFastQC Report

Summary

Basic StatisticsPer base sequence qualityPer tile sequence quality
Per sequence quality scores
(1) Per base sequence content
(D) Per sequence GC contentPer base N contentSequence Length Distribution
(1) Sequence Duplication LevelsOverrepresented sequencesAdapter ContentKmer Content

$\underset{\substack{\text { Roral instituTE } \\ \text { of TECHNOLOGY }}}{ }$

Basic Statistics

Measure	Value
Filename	bad_sequence.txt
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	395288
Sequences flagged as poor quality	0
Sequence length	40
\%GC	47

(2)er base sequence quality

Per base sequence quality

Quality scores across all bases (Illumina 1.5 encoding)

Quality scores across all bases (Illumina 1.5 encoding)

Stockholm
University universitet

SciLifeLab

Per tile sequence quality

Quality per tile

Quality per tile

Stockholm
University

Per sequence quality scores

UPPSALA
University UNIVERSITET

Per base sequence content

Sequence content across all bases

SciLifeLab

Per sequence GC content

SciLifeLab

Sequence Duplication Levels

Stockholm
University

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
AGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTC	2065	0.5224039181558763	No Hit
GATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG	2047	0.5178502762542754	No Hit
ATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGA	2014	0.5095019327680071	No Hit
CGATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTAT	1913	0.4839509420979134	No Hit
GTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGA	1879	0.47534961850600066	No Hit
AAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCT	1846	0.4670012750197325	No Hit
TGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCAT	1841	0.46573637449150995	No Hit
AACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAA	1836	0.46447147396328753	No Hit
GATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATC	1831	0.4632065734350651	No Hit
AAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTC	1779	0.45005160794155147	No Hit
ATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCA	1779	0.45005160794155147	No Hit
AATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCC	1760	0.4452449859343061	No Hit
AAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTT	1729	0.4374026026593269	No Hit
CGTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAG	1713	0.43335492096901496	No Hit
ATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAG	1708	0.43209002044079253	No Hit

Karolinska Institutet

Roval wssirute
offectuloloar

Stockholm University

UPPSALA UNIVERSITET

Adapter Content

SciLifeLab

Kmer content

Stockholm
University universitet

Failed FastQC - what to do?

- Try to figure out why
- If problem seem to be related to problems during sequencing - resequence!
- If problem is related to library prep - rerun if possible.
- You can filter out the low quality reads
- Adapter trimming (cutadapt)
- Filter low phred score reads (samtools, jaccard)
- If you have enough reads after filtering the data may still be useful.
- But be careful to do equal trimming on all samples!

SAM format

```
HWI-ST1018:7:1101:1648:2188#0 99 chr1 115275270 255 1S100M = 152
NTTCTATATTGGTTGCTCGCTCTAATTTGTCACGTCGGTCTGTTGAAATATTAAACCTAACATGGTCACCTTCCAGCAGGGTCACCTTGGATTTCGTATCT BS
\cceeeggeggghhhhbghhhhhhhhhhfhhhhhhhfhhhhhhhfffhhhffhhhfffgghhgg\Z^ddeeeedbdbdcacbabcbcccbbbcc^abbc] NH:i:1
HI:i:1 AS:i:194 nM:i:0
HWI-ST1018:7:1101:1648:2188\#0 147 chr1 \(115275321 \quad 255 \quad 101 \mathrm{M}=152\)
AAACCTAACATGGTCACCTTCCAGCAGGGTCACCTTGGATTTCGTATCTTTGTCTCCAAAGGGAAGTTCTTTAGGGATCACAAAGTCNANTTTGNTNNGTC
BBccbdccccccccbbcccccddcddeeeeccgggqghihiiiiifhihfgiiihhhhihhihiiiihhiihiiiiihihhihgd]RBRBec]QBQBBbbb
HI:i:1 AS:i:194 nM:i:0
HWI-ST1018:7:1101:2039:2206\#0 99 chr19 14574483 255 1S72M85N28M \(=14574529\)
232 NCCTTCCGCAACCCTGTCATTGAGAGGATTCCTCGGCTCCGACGGCAGAAGAAAATTTTCTCCAAGCAGCAAGGGAAGGCGTTCCAGCGTGCTAGGCAGAT BP\cceeefgggghhighiiiiiiiiihhhiiiiihiiiiiiiihiggeeedddddbbbcccbbccb^[`aaccccccccccX]accccc^acc]bc^b_a] NH:i:1
HI:i:1 AS:i:203 nM:i:0 XS:A:+
HWI-ST1018:7:1101:2039:2206\#0 147 chr19 14574529 255 26M85N75M \(=14574483\)
-232
GAAGAAAATTTTCTCCAAGCAGCAAGGGAAGGCGTTCCAGCGTGCTAGGCAGATGAACATCGATGTCGCCACGTGGGTGCGGCTGCTCCGGAGGCTCATCC ] ccdcccb
bbacbcaccccbcccccccccccbcccaccccccccdd_dddeeeeeeeggggiiiiihihiiiiiiiihiihiiiiiiigfgggeeeeebbb NH:i:1 HI:i:1
AS:i:203 nM:i:0 XS:A:+
```

More details on:
http://samtools.github.io/hts-specs/SAMv1.pdf
http://genome.sph.umich.edu/wiki/SAM

UPPSALA
University \qquad

BAM/SAM file formats

- All mapped reads with location in genome, mapping information etc. (https://samtools.github.io/hts-specs/ SAMv1.pdf)
- SAM (Sequence Alignment/Map) format alignment.sam
- BAM is a compressed sam format - alignment.bam
- A bam-file (always) needs to be indexed and sorted alignment.bam.bai
- Samtools - a simple program for converting between bam/sam, indexing, sorting, filtering, etc.

Code
\$ module load bioinfo-tools
\$ module load samtools

Mapping logs - mapping efficiency

- Program specific how the output will be (STAR, Bowtie, BWA, Tophat...)
- Always gives:
- \% uniquely mapping - ideally around 90\%
- \% multi-mapping - will depend on read length
- \% unmapped - could indicate contaminations, adaptors
- Also statistics on:
- Mismatches / indels
- Splice junctions

Bad mapping - what to do?

- First step - try to figure out why it failed. With the use of FastQC/RseQC/Mapping logs.
- Perhaps also look for contaminant species
- Redo library prep controlling for possible errors
- Low mapping, but not completely failed.
- Figure out why!
- Is it equal for all samples?
- Could it introduce any bias in the data?

Mapping QC
 - RseQC

reads.fastq.gz
STAR
Reads

Mapping

Reference
genome.fa
mappedReads.bam
Mapped reads

Gene annotation:
ref.bed / ref.gtf

Gene expression

Stockholm
UPPSALA UNIVERSITET

After mapping - RseQC package

- General sequence QC:
- sequence quality
- nucleotide composition bias
- PCR bias and
- GC bias
- RNA-seq specific QC:

Code

\$ module load bioinfo-tools
\$ module load rseqc/2.4
\$ geneBody_coverage.py -r ref.bed12 -i mappedReads.bam -o genecoverage

- evaluate sequencing saturation
- mapped reads distribution
- coverage uniformity
- strand specificity
- Etc..
- Some tools for file manipulations
http://rseqc.sourceforge.net/

Soft clipping - clipping_profile.py

clipping profile

Stockholm

Gene coverage geneBody_coverage.py

Not degraded

Degraded

Distance between PE-reads -
 inner_distance.py

Mean=60;SD=52

Stockholm
UPPSALA
University UNIVERSITET
SciLifeLab

Where in the genome do your reads map? - read_distribution.py

Group	Total_bases	Tag_count	Tags/Kb
CDS_Exons	33302033	20002271	600.63
5'UTR_Exons	21717577	4408991	203.01
3'UTR_Exons	15347845	3643326	237.38
Introns	1132597354	6325392	5.58
TSS_up_1kb	17957047	215331	11.99
TSS_up_5kb	81621382	392296	4.81
TSS_up_10kb	149730983	769231	5.14
TES_down_1kb	18298543	266161	14.55
TES_down_5kb	78900674	729997	9.25
TES_down_10kb	140361190	896882	6.39

Known and novel splice junctions junction_saturation.py or junction_annotation.py

Gene detection subsampling - RPKM_saturation.py How deep do you need to sequence?

Q3

Q2

Q4

Stockholm University universitet

Bad RseQC output - what to do?

- Try to figure out what went wrong.
- Redo library prep controlling for possible errors
- Is it equal for all samples?
- Could it introduce any bias in the data?
- RNA-degradation in some samples
- Possible to use a region at 3^{\prime} end for expression estimates.

SciLifeLab

Sample swaps and outliers can be identified using PCA

Differences in read distribution

 between samples can be identified using Principal Component Analysis (PCA)

QC test case 1

Samples from three different species

1. C.rubella

- Small flowers
- Normal leaves
- Genome is sequenced

2. C. grandiflora

- Large flowers
- Normal leaves

3. Hybrid

- Intermediate flowers
- Normal leaves

Principal component 1 separates samples from flowers and leaves

Stockholm
University

Principal component 2 and 3 separates the different species

Stockholm University UNIVERSITET

QC test case 2

- 4 Tissues
- Fat body
- Gut
- Labial gland
- Malphighian tubules
- 3 Phylogenetic groups
- >70 samples

Stockholm

PCA analysis detected potential sample swaps

Stockholm

My PCA looks strange - what to do?

- Clear sample swaps
- Check sequence indices, lab logs etc. to verify new classification.
- If you have enough replicates, remove instead of changing labels if you are uncertain.
- Outliers
- Figure out why they are outliers
- Do not remove samples only because they do not fit your expectation - Bad science!
- PCA does not group my sample sets
- Try different methods of dimensionality reduction / clustering
- Perhaps technical/biological variation is higher than your expected effect -> Batch normalization

Sources of variation

- Biological variation
- Patient to patient variation
- Sex
- Time points of samples taken
- Etc.....
- Technical variation
- At each step of RNA extraction and library preparation

Spike-in control RNA

- Addition of external RNA molecules into the samples before library prep
- Will give estimate of technical variation:
- Sensitivity / detection
- Accuracy
- Specific biases
- Also used to estimate amount of RNA in the samples
- Most commonly ERCC - pool of 48 or 96 synthetic mRNAs with various lengths and GC content, at 17 different concentrations
- Allows for cross comparison of datasets

Read Count vs. ERCC Concentration

- Sample 1
- Sample 2

Technical noise / Biological variation

Replicates, replicates, replicates

- Technical replicates
- Biological replicates
- If you have enough material, always do extra replicates in case you want to remove low quality samples.

Stockholm
UPPSALA
UNIVERSITET

Experimental Design

Balanced Blocked Design

Stockholm University

Statistical Design and Analysis of RNA Sequencing Data Paul L. Auer and R. W. Doerge ${ }^{1}$
Department of Slatistics, Purdue Universily, West Lafayette, Indiana 47907
Manuscript received January 31, 2010 Manuscript received January 31, 2010

Conclusions

- Good quality data is the first step in any RNA-seq experiment
- The reason for low quality samples may require some detective work
- More replicates allows you to filter out low quality libraries without losing statistical power
- Depending on where you sequence, some of the QC steps will be performed at the platform.

Questions?

Stockholm

RNA-seq libraries

A-tailing

More mapping bias when using top hat 2 with default settings than when using STAR or Stampy with default setting

PCR duplicates read_duplication.py

Stockholm

