## **RNA-seq Quality Control**

Before the analysis begins

#### asa.bjorklund@scilifelab.se

Enabler for Life Sciences





## Overview

- Introduction
- FastQC read based QC
- RseQC mapping based QC
- PCA
- Spike-in controls
- Experimental design





#### **RNA-seq libraries**



What could go wrong?





# What could go wrong?

- RNA quality:
  - Degradation
  - Contaminations (pathogens or other sources)
  - GC-bias
  - Nuclear vs organellar reads
- Library prep:
  - Failed reactions
  - RNA / Adapter ratios primer dimers
  - Clonal duplicates
  - Chimeric reads
  - Contaminations
- Sequencing:
  - Base calling errors
  - Uncalled bases
  - Low quality bases (3' end)
  - Contaminations
  - Sequence complexity





#### From samples to RNA to reads -might not be what you think they are

- Mixing samples
  - 30 samples with 5 steps from samples to reads has 24 300 000 potential mix ups of samples
  - Error rate 1/ 100 with 5 steps suggest that one of every 20 sample is mislabeled
- Experiments go wrong
  - 30 samples with 5 steps from samples to reads has 150 potential steps for errors
  - Error rate 1/100 with 5 steps suggest that one of every 20 samples the reads does not represent the sample
- Combine the two steps and approximately one of every 10 samples are wrong





## **RNA-seq analysis workflow**











Paired end data usually in format sampleX\_1.fastq and sampleX\_2.fastq with same SEQ\_ID for both mate pairs, followed by /1 and /2 (or \_f and \_r)





## Fastq – read file format

| SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS | SSSSSSSSSS | ssss                                    |                         |              |
|-----------------------------------------|------------|-----------------------------------------|-------------------------|--------------|
| x                                       | ******     | ******                                  | *****                   |              |
|                                         |            |                                         |                         |              |
|                                         |            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                         |              |
| LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL |            |                                         |                         |              |
| !"#\$%&'()*+,/0123456789:;*             |            |                                         |                         |              |
| · #000 ()**;-:/0123450/05:;*            |            |                                         | () _ abcderginf)kranopq | 120004472551 |
| 33 59                                   | 64         | 73                                      | 104                     | 126          |
|                                         |            |                                         | 104                     | 120          |
| 0                                       |            |                                         |                         |              |
| -5                                      |            | 9                                       |                         |              |
|                                         |            | 9                                       |                         |              |
|                                         |            | 9                                       |                         |              |
| 0.2                                     |            | 41                                      |                         |              |
|                                         |            |                                         |                         |              |
| S - Sanger Phred+33,                    | raw reads  | typically (0, 40)                       |                         |              |
| X - Solexa Solexa+64,                   | raw reads  | typically (-5, 40)                      |                         |              |
| <pre>I - Illumina 1.3+ Phred+64,</pre>  | raw reads  | typically (0, 40)                       |                         |              |
| J - Illumina 1.5+ Phred+64,             |            |                                         |                         |              |
| with 0=unused, 1=unused,                |            |                                         | Indicator (bold)        |              |
| (Note: See discussion abo               |            |                                         | ,                       |              |
| L - Illumina 1.8+ Phred+33,             |            |                                         |                         |              |











# Basic read metrics with FastQC

A program that analyses some of the basic metrics on fastq raw read files.

- Quality
- Length
- Sequence bias
- GC content
- Repeated sequences
- Adapter contamination



http://www.bioinformatics.babraham.ac.uk/projects/fastqc/





## FastQC report

#### FastQC Report

#### Summary







#### Basic Statistics

| Measure                           | Value                   |  |
|-----------------------------------|-------------------------|--|
| Filename                          | bad_sequence.txt        |  |
| File type                         | Conventional base calls |  |
| Encoding                          | Illumina 1.5            |  |
| Total Sequences                   | 395288                  |  |
| Sequences flagged as poor quality | 0                       |  |
| Sequence length                   | 40                      |  |
| %GC                               | 47                      |  |

#### Per base sequence quality

34

32

Quality scores across all bases (Illumina 1



#### Per base sequence quality



Quality scores across all bases (Illumina 1.5 encoding)







## Per tile sequence quality







#### Per sequence quality scores







#### Per base sequence content







### Per sequence GC content



Karolinska nstitutet

> ROYAL INSTITUTE OF TECHNOLOGY

Stockholm

University

UPPSALA

UNIVERSITET

SciLifeLab

## **Sequence Duplication Levels**









#### **Overrepresented sequences**

| Sequence                                 | Count | Percentage          | Possible Source |
|------------------------------------------|-------|---------------------|-----------------|
| AGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTC | 2065  | 0.5224039181558763  | No Hit          |
| GATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG | 2047  | 0.5178502762542754  | No Hit          |
| ATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGA | 2014  | 0.5095019327680071  | No Hit          |
| CGATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTAT | 1913  | 0.4839509420979134  | No Hit          |
| GTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGA | 1879  | 0.47534961850600066 | No Hit          |
| AAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCT | 1846  | 0.4670012750197325  | No Hit          |
| TGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCAT | 1841  | 0.46573637449150995 | No Hit          |
| AACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAA | 1836  | 0.46447147396328753 | No Hit          |
| GATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATC | 1831  | 0.4632065734350651  | No Hit          |
| AAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTC | 1779  | 0.45005160794155147 | No Hit          |
| ATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCA | 1779  | 0.45005160794155147 | No Hit          |
| AATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCC | 1760  | 0.4452449859343061  | No Hit          |
| AAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTT | 1729  | 0.4374026026593269  | No Hit          |
| CGTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAG | 1713  | 0.43335492096901496 | No Hit          |
| ATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAG | 1708  | 0.43209002044079253 | No Hit          |





### **Adapter Content**



#### Kmer content







# Failed FastQC – what to do?

- Try to figure out why
  - If problem seem to be related to problems during sequencing resequence!
  - If problem is related to library prep rerun if possible.
- You can filter out the low quality reads
  - Adapter trimming (cutadapt)
  - Filter low phred score reads (samtools, jaccard)
- If you have enough reads after filtering the data may still be useful.
- But be careful to do equal trimming on all samples!











### SAM format

HWI-ST1018:7:1101:1648:2188#0 115275270 255 1S100M =115275321 152 99 chr1 NTTCTATATTGGTTGCTCGCTCTAATTTGTCACGTCGGTCTGTTGAAATATTAAACCTAACATGGTCACCTTCCAGGGGTCACCTTGGATTTCGTATCT BS NH:i:1 HI:i:1 AS:i:194 nM:i:0 -152HWI-ST1018:7:1101:1648:2188#0 147 115275321 255 101M chr1 115275270 AAACCTAACATGGTCACCTTCCAGCAGGGTCACCTTGGATTTCGTATCTTTGTCTCCAAAGGGAAGTTCTTTAGGGATCACAAAGTCNANTTTGNTNNGTC BBccbdcccccccbbcccccddcddeeeeccqqqqqhihiiiiifhihfgiiihhhhihiiiiihhiiiiihhihid]RBRBec]QBQBBbbb NH:i:1 HI:i:1 AS:i:194 nM:i:0 HWI-ST1018:7:1101:2039:2206#0 99 chr19 14574483 255 1S72M85N28M 14574529 232 BP\cceeefgqqqhhiqhiiiiiiiihhhiiiiiiiiiiiiiiiaiiiiaiageeedddddbbbcccbbccb^[`aaccccccccX]accccc^acc]bc^b a] NH:i:1 HI:i:1 AS:i:203 nM:i:O XS:A:+ HWI-ST1018:7:1101:2039:2206#0 147 chr19 14574529 255 26M85N75M 14574483 -232 GAAGAAAATTTTCTCCAAGCAAGGGAAGGGGTTCCAGCGTGCTAGGCAGATGAACATCGATGTCGCCACGTGGGTGCGGCTGCTCCGGAGGCTCATCC 1ccdcccb HI:i:1 NH:i:1 AS:i:203 nM:i:0 XS:A:+

> More details on: http://samtools.github.io/hts-specs/SAMv1.pdf http://genome.sph.umich.edu/wiki/SAM





UNIVERSITET



# BAM/SAM file formats

- All mapped reads with location in genome, mapping information etc. (https://samtools.github.io/hts-specs/ SAMv1.pdf)
- SAM (Sequence Alignment/Map) format alignment.sam
- BAM is a compressed sam format alignment.bam
- A bam-file (always) needs to be indexed and sorted alignment.bam.bai
- Samtools a simple program for converting between bam/sam, indexing, sorting, filtering, etc.





# Mapping logs – mapping efficiency

- Program specific how the output will be (STAR, Bowtie, BWA, Tophat...)
- Always gives:
  - % uniquely mapping ideally around 90%
  - % multi-mapping will depend on read length
  - % unmapped could indicate contaminations, adaptors
- Also statistics on:
  - Mismatches / indels
  - Splice junctions





# Bad mapping – what to do?

- First step try to figure out why it failed. With the use of FastQC/RseQC/Mapping logs.
  - Perhaps also look for contaminant species
  - Redo library prep controlling for possible errors
- Low mapping, but not completely failed.
  - Figure out why!
  - Is it equal for all samples?
  - Could it introduce any bias in the data?











# After mapping - RseQC package

- General sequence QC:
  - sequence quality
  - nucleotide composition bias
  - PCR bias and
  - GC bias
- RNA-seq specific QC:
  - evaluate sequencing saturation
  - mapped reads distribution
  - coverage uniformity
  - strand specificity
  - Etc..
- Some tools for file manipulations

#### http://rseqc.sourceforge.net/



#### Code

- \$ module load bioinfo-tools
- \$ module load rseqc/2.4

```
$ geneBody_coverage.py -r
ref.bed12 -i mappedReads.bam -o
genecoverage
```



# Soft clipping - clipping\_profile.py

clipping profile



Position of reads



SciLifeLab

# Gene coverage - geneBody\_coverage.py

#### Not degraded

Degraded



### Distance between PE-reads inner\_distance.py

Mean=60;SD=52

0.008 0.006 Density 0.004 0.002 0.000 -100 -50 0 50 100 150 200

Inner distance (bp)





## Where in the genome do your reads map? - read\_distribution.py

| Group         | Total_bases | Tag_count | Tags/Kb |
|---------------|-------------|-----------|---------|
| CDS_Exons     | 33302033    | 20002271  | 600.63  |
| 5'UTR_Exons   | 21717577    | 4408991   | 203.01  |
| 3'UTR_Exons   | 15347845    | 3643326   | 237.38  |
| Introns       | 1132597354  | 6325392   | 5.58    |
| TSS_up_1kb    | 17957047    | 215331    | 11.99   |
| TSS_up_5kb    | 81621382    | 392296    | 4.81    |
| TSS_up_10kb   | 149730983   | 769231    | 5.14    |
| TES_down_1kb  | 18298543    | 266161    | 14.55   |
| TES_down_5kb  | 78900674    | 729997    | 9.25    |
| TES_down_10kb | 140361190   | 896882    | 6.39    |





# Known and novel splice junctions – junction\_saturation.py or junction\_annotation.py







#### Gene detection subsampling - RPKM\_saturation.py How deep do you need to sequence?



(arolinska nstitutet

> ROYAL INSTITUTE OF TECHNOLOGY

Stockholm

University

UPPSALA UNIVERSITET SciLifeLab

## Bad RseQC output – what to do?

- Try to figure out what went wrong.
  - Redo library prep controlling for possible errors
  - Is it equal for all samples?
  - Could it introduce any bias in the data?
- RNA-degradation in some samples
  - Possible to use a region at 3' end for expression estimates.









# Sample swaps and outliers can be identified using PCA





# Differences in read distribution between samples can be identified using Principal Component Analysis (PCA)







### QC test case 1



#### Samples from three different species

- 1. C.rubella
  - Small flowers
  - Normal leaves
  - Genome is sequenced
- 2. C. grandiflora
  - Large flowers
  - Normal leaves
- 3. Hybrid
  - Intermediate flowers
  - Normal leaves









### Principal component 1 separates samples from flowers and leaves





Δ

Δ

Δ

Δ

 $\Delta$ 

Δ

 $\Delta^{\Delta}$ 

Δ

Δ

 $\triangle \triangle$ 

100

Δ

Δ

Δ

Δ

#### Principal component 2 and 3 separates the different species









## QC test case 2



- 4 Tissues
  - Fat body
  - Gut
  - Labial gland
  - Malphighian tubules
- 3 Phylogenetic groups
- >70 samples





# PCA analysis detected potential sample swaps



PCs 1,2

PC1





## My PCA looks strange – what to do?

- Clear sample swaps
  - Check sequence indices, lab logs etc. to verify new classification.
  - If you have enough replicates, remove instead of changing labels if you are uncertain.
- Outliers
  - Figure out why they are outliers
  - Do not remove samples only because they do not fit your expectation Bad science!
- PCA does not group my sample sets
  - Try different methods of dimensionality reduction / clustering
  - Perhaps technical/biological variation is higher than your expected effect -> Batch normalization





# Sources of variation

- Biological variation
  - Patient to patient variation
  - Sex
  - Time points of samples taken
  - Etc.....
- Technical variation
  - At each step of RNA extraction and library preparation





# Spike-in control RNA

- Addition of external RNA molecules into the samples before library prep
- Will give estimate of technical variation:
  - Sensitivity / detection
  - Accuracy
  - Specific biases
- Also used to estimate amount of RNA in the samples
- Most commonly ERCC pool of 48 or 96 synthetic mRNAs with various lengths and GC content, at 17 different concentrations
- Allows for cross comparison of datasets







ROYAL INSTITUTE OF TECHNOLOGY

(https://cofactorgenomics.com)

#### Technical noise / Biological variation



# Replicates, replicates, replicates

- Technical replicates
- Biological replicates
- If you have enough material, always do extra replicates in case you want to remove low quality samples.





#### **Experimental Design**



# Conclusions

- Good quality data is the first step in any RNA-seq experiment
- The reason for low quality samples may require some detective work
- More replicates allows you to filter out low quality libraries without losing statistical power
- Depending on where you sequence, some of the QC steps will be performed at the platform.





### Questions?





## **RNA-seq libraries**



#### More mapping bias when using top hat 2 with default settings than when using STAR or Stampy with default setting



ROYAL INSTITUTE OF TECHNOLOGY Universitv

UNIVERSITET



SciLifeLab

# PCR duplicates – read\_duplication.py



Karolinska Institutet

SciLifeLab