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RNA	
  flavors	
  	
  
(pre	
  sequencing	
  era)	
  

•  House	
  keeping	
  RNAs	
  
–  rRNAs,	
  tRNAs,	
  snoRNAs,	
  
snRNAs,	
  SRP	
  RNAs,	
  
cataly1c	
  RNAs	
  (RNAse	
  E)	
  

•  Protein	
  coding	
  RNAs	
  
–  (1	
  coding	
  gene	
  ~	
  1	
  mRNA)	
  

•  Regulatory	
  RNAs	
  
–  Few	
  rare	
  examples	
  



ENCODE,	
  the	
  Encyclopedia	
  of	
  DNA	
  Elements,	
  is	
  a	
  project	
  funded	
  by	
  the	
  Na1onal	
  
Human	
  Genome	
  Research	
  Ins1tute	
  to	
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  all	
  regions	
  of	
  transcrip1on,	
  
transcrip1on	
  factor	
  associa1on,	
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  structure	
  and	
  histone	
  modifica1on	
  in	
  
the	
  human	
  genome	
  sequence.	
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Defining	
  func1onal	
  DNA	
  elements	
  in	
  

the	
  human	
  genome	
  
	
  •  Statement	
  

–  A	
  priori,	
  we	
  should	
  not	
  expect	
  the	
  
transcriptome	
  to	
  consist	
  
exclusively	
  of	
  func1onal	
  RNAs.	
  	
  

•  Why	
  is	
  that	
  
–  Zero	
  tolerance	
  for	
  errant	
  

transcripts	
  would	
  come	
  at	
  high	
  
cost	
  in	
  the	
  proofreading	
  machinery	
  
needed	
  to	
  perfectly	
  gate	
  RNA	
  
polymerase	
  and	
  splicing	
  ac1vi1es,	
  
or	
  to	
  instantly	
  eliminate	
  spurious	
  
transcripts.	
  

–  In	
  general,	
  sequences	
  encoding	
  
RNAs	
  transcribed	
  by	
  noisy	
  
transcrip1onal	
  machinery	
  are	
  
expected	
  to	
  be	
  less	
  constrained,	
  
which	
  is	
  consistent	
  with	
  data	
  
shown	
  here	
  for	
  very	
  low	
  
abundance	
  RNA	
  	
  

	
  

•  Consequence	
  
–  Thus,	
  one	
  should	
  have	
  high	
  

confidence	
  that	
  the	
  subset	
  of	
  the	
  
genome	
  with	
  large	
  signals	
  for	
  RNA	
  
or	
  chroma1n	
  signatures	
  coupled	
  
with	
  strong	
  conserva1on	
  is	
  
func1onal	
  and	
  will	
  be	
  supported	
  by	
  
appropriate	
  gene1c	
  tests.	
  	
  

–  In	
  contrast,	
  the	
  larger	
  propor1on	
  
of	
  genome	
  with	
  reproducible	
  but	
  
low	
  biochemical	
  signal	
  strength	
  
and	
  less	
  evolu1onary	
  conserva1on	
  
is	
  challenging	
  to	
  parse	
  between	
  
specific	
  func1ons	
  and	
  biological	
  
noise.	
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  course	
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  without	
  an	
  debate	
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Abstract

A series of reports over the last few years have indicated that a much larger portion of the mammalian genome is
transcribed than can be accounted for by currently annotated genes, but the quantity and nature of these additional
transcripts remains unclear. Here, we have used data from single- and paired-end RNA-Seq and tiling arrays to assess the
quantity and composition of transcripts in PolyA+ RNA from human and mouse tissues. Relative to tiling arrays, RNA-Seq
identifies many fewer transcribed regions (‘‘seqfrags’’) outside known exons and ncRNAs. Most nonexonic seqfrags are in
introns, raising the possibility that they are fragments of pre-mRNAs. The chromosomal locations of the majority of
intergenic seqfrags in RNA-Seq data are near known genes, consistent with alternative cleavage and polyadenylation site
usage, promoter- and terminator-associated transcripts, or new alternative exons; indeed, reads that bridge splice sites
identified 4,544 new exons, affecting 3,554 genes. Most of the remaining seqfrags correspond to either single reads that
display characteristics of random sampling from a low-level background or several thousand small transcripts (median
length = 111 bp) present at higher levels, which also tend to display sequence conservation and originate from regions with
open chromatin. We conclude that, while there are bona fide new intergenic transcripts, their number and abundance is
generally low in comparison to known exons, and the genome is not as pervasively transcribed as previously reported.
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Introduction

In recent years established views of transcription have been
challenged by the observation that a much larger portion of the
human and mouse genomes is transcribed than can be accounted
for by currently annotated coding and noncoding genes. The bulk
of these findings have come from experiments using ‘‘tiling’’
microarrays with probes that cover the non-repetitive genome at
regular intervals [1–9], or from sequencing efforts of full-length
cDNA libraries enriched for rare transcripts [10,11]. Additionally,
capped analysis of gene expression (CAGE) in human and mouse
show that a significant number of sequenced 59 tags map to
intergenic regions [12]. Estimates of the proportion of transcripts
that map to locations separate from known exons range from 47%
to 80% and are distributed approximately equally between introns
and intergenic regions. Dubbed transcriptional ‘‘dark matter’’
[13], the ‘‘hidden’’ transcriptome [1], or transcripts of unknown
function (TUFs) [4,14], the exact nature of much of this additional
transcription is unclear, but it has been presumed to comprise a
combination of novel protein coding transcripts, extensions of
existing transcripts, noncoding RNAs (ncRNAs), antisense tran-
scripts, and biological or experimental background. Determining

the relative contributions of each of these potential sources is
important for understanding the nature and possible biological
function of transcriptional dark matter.

Homology searches for transcripts mapping outside known
annotation boundaries [10], as well as cDNA sequencing efforts,
indicate that it is still possible to find new exons of protein coding
genes [10,15,16]. The genomic positions of TUFs are also biased
towards known transcripts [8], suggesting that at least a portion
may represent extensions of current gene annotations. Neverthe-
less, the majority of dark matter transcripts is thought to be
noncoding [2,4,5,10]. Previous efforts to characterize dark matter
transcripts have revealed the existence of thousands of ncRNAs
with evidence for tissue-specific expression [17,18], as well as over
a thousand large intervening noncoding RNAs (lincRNAs)
originating from intergenic regions bearing chromatin marks
associated with transcription [19]. Other studies have reported
new classes of ncRNAs, such as those that cluster close to the
transcription start sites (TSSs) of protein coding genes [20–24].
These promoter-associated RNAs (pasRNAs) typically initiate in
the nucleosome free regions that mark a TSS, with transcription
occurring in both directions. Finally, results from the ENCODE
pilot project have suggested a highly interleaved structure of the
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Current estimates indicate that only
about 1.2% of the mammalian genome
codes for amino acids in proteins. How-
ever, mounting evidence over the past
decade has suggested that the vast major-
ity of the genome is transcribed, well
beyond the boundaries of known genes, a
phenomenon known as pervasive tran-
scription [1]. Challenging this view, an
article published in PLoS Biology by van
Bakel et al. concluded that ‘‘the genome is
not as pervasively transcribed as previous-
ly reported’’ [2] and that the majority of
the detected low-level transcription is due
to technical artefacts and/or background
biological noise. These conclusions attract-
ed considerable publicity [3–6]. Here, we
present an evaluation of the analysis and
conclusions of van Bakel et al. compared
to those of others and show that (1) the
existence of pervasive transcription is
supported by multiple independent tech-
niques; (2) re-analysis of the van Bakel et
al. tiling arrays shows that their results are
atypical compared to those of ENCODE
and lack independent validation; and (3)
the RNA sequencing dataset used by van
Bakel et al. suffered from insufficient
sequencing depth and poor transcript
assembly, compromising their ability to
detect the less abundant transcripts outside
of protein-coding genes. We conclude that
the totality of the evidence strongly
supports pervasive transcription of mam-
malian genomes, although the biological
significance of many novel coding and
noncoding transcripts remains to be ex-
plored.

Previous Evidence for Pervasive
Transcription

The conclusion that the mammalian
genome is pervasively transcribed (i.e.,
‘‘that the majority of its bases are associ-
ated with at least one primary transcript’’
[1]) was based on multiple lines of
evidence. Both large-scale cDNA sequenc-
ing and hybridization to genome-wide
tiling arrays were the major empirical
sources of data. Analysis of full-length
cDNAs from many tissues and develop-
mental stages in mouse showed that at
least 63% of the genome is transcribed and
identified thousands of novel protein-
coding transcripts and over 30,000 long
noncoding intronic, intergenic, and anti-
sense transcripts [7–9]. In parallel, whole
chromosome tiling array interrogation of
the RNA content of a variety of human
tissues and cell lines revealed that, collec-
tively, at least 93% of genomic bases are
transcribed in one cell type or another
[1,10–13].

Since it is well established that highly
expressed mRNAs dominate the non-

ribosomal portion of the polyA+ transcrip-
tome [7,8,10,14–19], normalization ap-
proaches were used to reduce the quantity
of highly expressed transcripts in these
cDNA analyses [7,8], and are implicit in
tiling array approaches. This was neces-
sary to allow the detection of rarer (often
cell type–restricted [1,13,16,19,20]) tran-
scripts.

The evidence for pervasive transcription
also includes observations from a wide
variety of other independent techniques
(see reviews [21] and [22] for references).
Indeed, a simple query of currently
available human spliced EST data in
GenBank shows that documented tran-
scripts cover 57.09% of the genome.
Because ESTs are largely generated from
polyadenylated RNAs and do not exhaus-
tively sample the transcriptome, this cov-
erage represents the lower bound of
genomic transcription.

Based on an analysis of genome-wide
tiling arrays and short read RNA sequenc-
ing data, van Bakel et al. report that ‘‘most
‘dark matter’ transcripts (i.e., novel tran-
scripts of unknown function) are associated
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Clark et al. criticize several aspects of
our study [1], and specifically challenge
our assertion that the degree of pervasive
transcription has previously been overstat-
ed. We disagree with much of their
reasoning and their interpretation of our
work. For example, many of our conclu-
sions are based on overall sequence read
distributions, while Clark et al. focus on
transcript units and seqfrags (sets of
overlapping reads). A key point is that
one can derive a robust estimate of the
relative amounts of different transcript
types without having a complete recon-
struction of every single transcript.

In this brief response, we first revisit
what is meant by pervasive transcription,
and its potential significance. We then
discuss the major points raised by Clark
et al. in the order presented in their
critique. Finally, we demonstrate that
conclusions very similar to those of our
original study are reached with a dataset
with far greater read depth, obtained by
strand-specific sequencing of rRNA-de-
pleted total RNA from a single cell type.

The Meaning of ‘‘Pervasive’’,
and the Importance of
Transcript Abundance

Clark et al. define pervasive transcrip-
tion of a genome to mean ‘‘that the
majority of its bases are associated with
at least one primary transcript’’, which is
the same definition used in the ENCODE
1% paper [2]. We believe that this specific
claim is not contested, nor is it particularly
interesting. First, it has long been assumed
that roughly half of the human genome
comprises introns [3]. Second, the mech-
anisms that control the positions of
initiation and termination of Pol II
transcription, as well as RNA processing,
are imperfect, such that low-level back-
ground transcripts from both physiologi-
cally relevant and non-canonical sites arise
[4–6]. Blockage of surveillance mecha-
nisms that normally degrade such ‘‘cryp-

tic’’ transcripts greatly increases their
abundance [7,8].

We acknowledge that the phrase quoted
by Clark et al. in our Author Summary
should have read ‘‘stably transcribed’’, or
some equivalent, rather than simply ‘‘tran-
scribed’’. But this does not change the fact
that we strongly disagree with the funda-
mental argument put forward by Clark
et al., which is that the genomic area
corresponding to transcripts is more im-
portant than their relative abundance. This
viewpoint makes little sense to us. Given the
various sources of extraneous sequence
reads, both biological and laboratory-
derived (see below), it is expected that with
sufficient sequencing depth the entire
genome would eventually be encompassed
by reads. Our statement that ‘‘the genome
is not as not as pervasively transcribed as
previously reported’’ stems from the fact
that our observations relate to the relative
quantity of material detected.

Of course, some rare transcripts (and/
or rare transcription) are functional, and
low-level transcription may also provide a
pool of material for evolutionary tinkering.
But given that known mechanisms—in
particular, imperfections in termination
(see below)—can explain the presence of
low-level random (and many non-random)
transcripts, we believe the burden of proof
is to show that such transcripts are indeed
functional, rather than to disprove their
putative functionality.

Contradiction of Previous
Reports

The fact that our analyses contradict
previous reports is precisely why we

emphasized the lack of abundant pervasive
transcription in our study. Clark et al. cite
papers that have previously documented
pervasive transcription, and point out that
several different approaches have been
used as confirmation. We believe that Clark
et al. misinterpret what can be claimed
from much of the literature in this area, and
fail to acknowledge known weaknesses in
some of these studies. We previously
reviewed these issues [9]. For example,
the number of transfrags detected in
permuted tiling array data can be as high
as it is in the real data [10]. In addition, a
common form of ‘‘validation’’ in these
papers is RT-PCR or RACE, but these
approaches are generally semi-quantitative
at best and are prone to artefacts such as
template switching, which readily produces
chimeric transcripts in vitro ([11] and
references therein). Indeed, we note that
in the ENCODE 1% study [2] repeatedly
cited by Clark et al., 75 of the 100 negative
controls (randomly selected non-transfrag
regions) were actually detected by RACE,
making the ‘‘validation’’ rate for negative
controls only slightly lower than that for the
intronic and intergenic transfrags (86%–
88%). Thus, either the tiling arrays or
RACE assays are highly error prone. The
contention of Clark et al. that ‘‘any estimate
of the pervasiveness of transcription re-
quires inclusion of all data sources’’ is
flawed, because if one introduces erroneous
data from even a single source, the estimate
becomes worse.

Accuracy of Tiling Arrays

We agree that results obtained from
tiling arrays should improve with increased
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  not	
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  to	
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  func1onal	
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One	
  gene	
  many	
  different	
  mRNAs	
  
RNA-seq: alternative splicing



•  RNA	
  seq	
  course	
  

	
  
	
  



The	
  RNA	
  seq	
  course	
  
•  From	
  RNA	
  seq	
  to	
  reads	
  
•  Mapping	
  reads	
  programs	
  
•  Transcriptome	
  reconstruc1on	
  using	
  reference	
  
•  Transcriptome	
  reconstruc1on	
  without	
  reference	
  
•  QC	
  analysis	
  	
  
•  sRNA	
  analysis	
  
•  Differen1al	
  expression	
  analysis	
  

–  mRNAs	
  	
  
–  miRNAs	
  

•  Genome	
  annota1on	
  using	
  RNA	
  and	
  other	
  sources	
  
•  Differen1al	
  expression	
  using	
  mul1-­‐variate	
  analysis	
  
•  RNA	
  long	
  read	
  analysis	
  



From	
  RNA	
  to	
  short	
  reads	
  



Sequencing	
  pla7orms	
  

454	
  Life	
  Sciences	
  
pyrosequencing	
  

ABI	
  3730xl	
  
Sanger	
  Sequencing	
  

Length/read 	
  800	
  bp 	
   	
   	
   	
  400	
  bp 	
   	
   	
  100	
  bp 	
   	
  20	
  000+	
  bp	
  
Reads/run	
  	
   	
  96 	
   	
   	
   	
   	
  1	
  million 	
   	
   	
  2	
  billion 	
   	
  5	
  million	
  
Bases/run	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  60	
  kbp 	
   	
   	
   	
  400	
  Mbp 	
   	
   	
  500	
  Gbp 	
   	
  100	
  Gbp	
  
	
  
Speed 	
   	
  10	
  years/HG 	
   	
   	
  1	
  month/HG 	
   	
  1	
  day/HG 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  10	
  min/HG	
  

SOLiD	
  +	
  
Illumina	
  

Pacific	
  Biosciences,	
  
Oxford	
  Nanopore	
  etc	
  
Single-­‐molecule	
  	
  
sequencing	
  

“Old	
  school”	
   “2nd	
  gen”	
   “3rd	
  gen”	
  



Promises	
  and	
  pi7alls	
  

Sanger	
  
•  Low	
  throughput	
  	
  	
  	
  	
  	
   	
  (-­‐)	
  
•  Complete	
  transcripts 	
  (+)	
  
•  Only	
  highly	
  expressed	
  

genes 	
  	
  	
  	
  	
  	
   	
   	
   	
  (-­‐-­‐)	
  
•  Expensive	
  	
   	
   	
   	
  (-­‐)	
  
•  Low	
  background	
  noise 	
  (+)	
  
•  Easy	
  downstream	
  analysis	
  

(+)	
  
	
  

	
  
	
  

Micro	
  Arrays	
  
•  High	
  throughput	
   	
   	
   	
  (+)	
  
•  Only	
  known	
  sequences	
   	
  (-­‐)	
  
•  Limited	
  dynamic	
  range	
  	
   	
  (-­‐)	
  
•  Cheap	
   	
   	
  	
  	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   	
  (+)	
  
•  High	
  background	
  noise	
   	
  (-­‐)	
  
•  Not	
  strand	
  specific	
   	
   	
  (-­‐)	
  
•  Well	
  established	
  downstream	
  

methods 	
   	
   	
   	
  (+)	
  
	
  
	
  

RNAseq	
  
•  High	
  throughput	
   	
   	
   	
  (+)	
  
•  Frac1ons	
  of	
  transcripts	
  	
   	
   	
  (-­‐)	
  
•  Full	
  dynamic	
  range	
   	
   	
  (+-­‐)	
  
•  Unlimited	
  dynamic	
  range	
  	
  	
  	
  	
  	
  	
   	
  (+)	
  
•  Cheap 	
   	
   	
  	
  	
  	
  	
  	
  	
   	
   	
  (+)	
  
•  Low	
  background	
  noise 	
   	
  (+)	
  
•  Strand	
  specificity 	
   	
   	
  (+)	
  
•  Re-­‐sequencing 	
   	
   	
  (+)	
  

	
  

1	
  

10	
  

100	
  

1000	
  

10000	
  

1	
   10	
   100	
   1000	
   10000	
   100000	
   1000000	
  

Si
gn
al
	
  

#	
  trancripts/cell	
  

EST	
  

MicroArray	
  

RNAseq	
  



How	
  are	
  RNA-­‐seq	
  data	
  generated?	
  

Sampling	
  process	
  



RNA	
  seq	
  reads	
  correspond	
  directly	
  to	
  
abundance	
  of	
  RNAs	
  in	
  the	
  sample	
  



RNA	
  to	
  reads	
  
AAAAAAAA	
  

enrichments	
  -­‐>	
  

reads	
  -­‐>	
  

library	
  -­‐>	
  

RNA-­‐>	
   PolyA	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (mRNA)	
  
RiboMinus	
  	
  	
  	
  	
  	
  (-­‐	
  rRNA)	
  
Size	
  	
  <50	
  nt	
  	
  	
  	
  	
  (miRNA	
  )	
  
…..	
  	
  

Size	
  of	
  fragment	
  
Strand	
  specific	
  
5’	
  end	
  specific	
  	
  
3’	
  end	
  specific	
  
…..	
  	
  

Single	
  end	
  (1	
  read	
  per	
  fragment)	
  
Paired	
  end	
  (2	
  reads	
  per	
  fragment)	
  



Mapping	
  reads	
  to	
  reference	
  (Johan)	
  



Transcriptome	
  assembly	
  using	
  reference	
  (Estelle)	
  



Transcriptome	
  assembly	
  without	
  
reference	
  (Estelle)	
  



Mapping	
  long	
  reads	
  to	
  reference	
  



Genome	
  annota1on	
  



RNA	
  seq	
  Long	
  reads	
  



microRNA	
  analysis	
  (Jakub)	
  

(Berezikov	
  et	
  al.	
  Genome	
  Research,	
  2011.)	
  



ANOTHER	
  WAY	
  OF	
  LOOKING	
  AT	
  IT	
  

Reads	
  

Reference	
  

Mapping	
   Mapped	
  reads	
  

Expression	
  
per	
  gene	
  



Quality	
  control	
  
-­‐samples	
  might	
  not	
  be	
  what	
  you	
  think	
  they	
  are	
  
•  Experiments	
  go	
  wrong	
  
–  30	
  samples	
  with	
  5	
  steps	
  from	
  samples	
  to	
  reads	
  has	
  150	
  
poten1al	
  steps	
  for	
  errors	
  

–  Error	
  rate	
  1/100	
  with	
  5	
  steps	
  suggest	
  that	
  one	
  of	
  every	
  20	
  
samples	
  the	
  reads	
  does	
  not	
  represent	
  the	
  sample	
  	
  

•  Mixing	
  samples	
  
–  30	
  samples	
  with	
  5	
  steps	
  from	
  samples	
  to	
  reads	
  has	
  ~24M	
  
poten1al	
  mix	
  ups	
  of	
  samples	
  	
  

–  Error	
  rate	
  1/	
  100	
  with	
  5	
  steps	
  suggest	
  that	
  one	
  of	
  every	
  20	
  
sample	
  is	
  mislabeled	
  	
  

•  Combine	
  the	
  two	
  steps	
  and	
  approximately	
  one	
  of	
  
every	
  10	
  samples	
  are	
  wrong	
  



RNA	
  QC	
  (Åsa)	
  
Read	
  quality	
  

Transcript	
  quality	
  

Mapping	
  
sta1s1cs	
  



Compare	
  expression	
  between	
  
different	
  samples	
  (Åsa)	
  

Reads	
  

Reference	
  

Mapping	
   Mapped	
  reads	
  

Expression	
  	
  
per	
  gene	
  

Reads	
  

Reference	
  

Mapping	
   Mapped	
  reads	
  

Expression	
  	
  
per	
  gene	
  

Reads	
  

Reference	
  

Mapping	
   Mapped	
  reads	
  

Expression	
  	
  
per	
  gene	
  

Reads	
  

Reference	
  

Mapping	
   Mapped	
  reads	
  

Expression	
  	
  
per	
  gene	
  

Reads	
  

Reference	
  

Mapping	
   Mapped	
  reads	
  

Expression	
  	
  
per	
  gene	
  

Reads	
  

Reference	
  

Mapping	
   Mapped	
  reads	
  

Expression	
  	
  
per	
  gene	
  

Reads	
  

Reference	
  

Mapping	
   Mapped	
  reads	
  

Expression	
  	
  
per	
  gene	
  

Reads	
  

Reference	
  

Mapping	
   Mapped	
  reads	
  

Expression	
  	
  
per	
  gene	
  

Differen1al	
  
Expression	
  
Analysis	
  



Differen1al	
  expression	
  analysis	
  using	
  
univariate	
  analysis	
  (Åsa)	
  

Typically	
  univariate	
  analysis	
  (one	
  
gene	
  at	
  a	
  1me)	
  –	
  even	
  though	
  we	
  
know	
  that	
  genes	
  are	
  not	
  
independent	
  



	
  
	
  

Mul1	
  variate	
  differen1al	
  expression	
  	
  
analysis	
  (Sanela)	
  
Mul1variate	
  methods	
  such	
  as	
  PCA	
  (unsupervised)	
  or	
  PLS	
  (supervised)	
  can	
  be	
  used	
  to	
  
obtain	
  loadings	
  for	
  features	
  (genes/transcripts/…)	
  that	
  contribute	
  to	
  separa1on	
  of	
  groups	
  

The	
  loading	
  scores	
  can	
  be	
  used	
  as	
  a	
  
different	
  kind	
  of	
  measure	
  of	
  which	
  genes	
  
are	
  interes1ng	
  
	
  




