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ASE: allele-specific expression

Outline
1. Definition of ASE
2. Detecting ASE (introductory case)
3. Applications and prevalence of ASE
4. Important ASE considerations
(a) Variant calling
(b) Mapping biasASE tools
(c) Many variants in a gene
5. ASE tools
6. GeneiASE — a tool to detect genes with ASE from RNA-
seq data

[1] Definition of allele-specific
expression (ASE)

Adding another layer to transcriptome complexity...
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One gene can produce many different transcripts...

Adding another layer to transcriptome complexity...
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...and each gene is present on two chromosomes.
=> it has two alleles

Allele, definition

An allele is the variant form of a given gene (or locus).
Sometimes, different alleles can result in different

observable phenotypic traits, such as different pigmentation.

[od

If both alleles at a gene (or locus) on the homologous
chromosomes are the same, they and the organism are
homozygous with respect to that gene (or locus). If the
alleles are different, they and the organism are
heterozygous with respect to that gene (or locus).

https://en.wikipedia.org/wiki/Allele
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Allele-specific expression, definition

An imbalance in transcription between the maternal and
paternal alleles at a locus.

* |.e., a deviation from the expected 50/50 ratio of
transcription from the two alleles of a diploid organism.

* Can be assessed within a single individual
(Present also when ploidy >2, e.g., plants)

Other events may also be “allele-specific”, e.g.
 transcription factor binding

* DNA backbone methylation

* X-chromosome inactivation in female mammals

Allele-specific expression, definition

genomic DNA -> transcript (e.g. mRNA)

Allele-specific gene

Diploid genome expression (MRNAs)
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SNV

* SNV =single nucleotide variant
* The genomic SNV is reflected in the transcribed RNA (T is
U in RNA).

[2] Detecting ASE

Detecting allele-specific expression

Wet lab technologies:

* microarrays (if designed properly)

* gRT-PCR + TagMan

* pyrosequencing

+ RNA-seq

N.B.: as these are sequence-based they will not provide any
information in the case of a homozygous allele, although it
may still be expressed predominantly from only one of the
chromosomes.

eQTL — expression quantitative trait loci
Another approach!
Requires many subjects

Detecting allele-specific expression using RNA-seq data

* RNA-seq reads provide the sequence of a transcript
¢ ... which enables the determination of the allelic origin
of the reads overlapping with the SNV

Allele-specific gene
expression (MRNAs)

Diploid genome RNA-seq reads
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Detecting allele-specific expression using RNA-seq data
General outline:

1. Map the RNA-seq reads

2. Count the reads that map to either allele

3. Calculate effect size and p-value
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Detecting allele-specific expression using RNA-seq data
1. Map the RNA-seq reads

Paternal allele (a Maternal allele (A

.AGTCTTCCAATTAGC... .AGTCTTCTAATTAGC...

Reads — 10x coverage of the locus
..AGTCTTCTAATTAGC...
..AGTCTTCTAATTAGC...
.AGTCTTCCAATTAGC...
..AGTCTTCTAATTAGC...
.AGTCTTCTAATTAGC...
.AGTCTTCTAATTAGC...
.AGTCTTCTAATTAGC...
..AGTCTTCTAATTAGC...
..AGTCTTCCAATTAGC...
.AGTCTTCCAATTAGC...

Detecting allele-specific expression using RNA-seq data
1. Map the RNA-seq reads

Paternal allele (a Maternal allele (A

«.AGTCTTCCAATTAGC... «.AGTCTTCTAATTAGC...

Mapped reads
.AGTCTTCTAATTAGC...
AGTCTTCTAATTAGC...
AGTCTTCCAATTAGC...
.AGTCTTCTAATTAGC...
..AGTCTTCTAATTAGC...
AGTCTTCTAATTAGC...
. AGTCTTCTAATTAGC...
.AGTCTTCTAATTAGC...
. AGTCTTCCAATTAGC...
AGTCTTCCAATTAGC...

Detecting allele-specific expression using RNA-seq data
2. Count the reads

Paternal allele (a Maternal allele (A

3x ..AGTCTTCCAATTAGC... 7x ..AGTCTTCTAATTAGC...

3 reads mapped to paternal allele
7 reads mapped to maternal allele

In total 10 reads mapped to the locus

Detecting allele-specific expression using RNA-seq data
3. Calculate effect size and p-value

Effect size: (other definitions possible)
ASEgsrect = Conl (Ca + Cref) = 0.5
i.e., the fraction of counts mapped to alternative allele minus 0.5 =>
* if no ASE then ASE, =0
* range of ASE,g,is [-0.5, 0.5]
P-value: Use binomial with p=0.5 (assuming 50/50 transcription)

Our example from previous slide:
Effect size = ASE, o, = Cop/(Coe + Cpe) = 0.5 =3/(3+47) - 0.5 = 0.2
P-value: binomial test for deviation from 50/50 distribution between
alleles (in R):
> pbinom(3, size=10, prob=0.5)
[1] 0.171875

=> Not significant in this particular example

=>If coverage was 30x (9+21 reads) instead of 10x (3+7), then p-value < 0.03

eQTL vs. ASE
eQTL ASE
* Inter-individual differences in expression e Sufficient power with a single
* Modest effects individual

« Large number of SNP-gene combinations  * Identical cellular environment for
the two chromosomes
* Many samples needed - .
* No association to regulatory region
* May use microarrays for gene expression
. . * Must use RNA-seq for gene
* Genotyping required

expression
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eno!
10 individuals genotyped

[3] Applications and prevalence of ASE
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Application of ASE

Find protein variants

Allele-specific gene
expression (MRNAs)
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Application of ASE

Find cis-regulatory variant

Allele-specific gene

cis-regulatory expression (MRNAs)
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To infer a changed protein, the SNV must be Possible to detect if you also have information about non-transcribed
* in coding region variants (e.g., from whole-genome DNA sequencing or SNP-array).
* non-synonymous
Application of ASE Prevalence of ASE
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Possible to detect if you have expression measured from both normal and L”@a,’ 'eolobc.s;e o

tumor tissue (in the same individual).

Genes with significant ASE (% of genes with heterozygous variant).

[4] Important ASE considerations

Important ASE considerations

(a) Variant detection

(b) Mapping bias

(c) Many variants in a gene
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[4] Important ASE considerations:
(a) Variant detection

Variant detection

Variant = a position in the genome that is different from another genome.
* Homozygous variant: the two alleles are identical to each other

* Heterozygous variant: the two alleles are different

* “Ref.” = the allele is the same as for the reference genome

« “Alt.” = alternate = the allele is different from the reference genome

* SNV is one type of variant, others include insertion, deletion, ...

Variant detection = detecting what variants are present in a sample:
1. Variant calling — any position with evidence of an alternative base
2. Variant prioritization — define reliable variants with high confidence

Typically performed based on genomic DNA data, from
* Microarrays (e.g. lllumina Omni 2.5M)
* Sequencing (e.g. whole-genome re-sequencing or exome sequencing)

Variant detection from sequencing data

Start by map the reads.
Paternal allele (a Maternal allele (A)

AGTCTTCCAATTAGC... AGTCTTCTAATTAGC...

Reads — 10x coverage of the locus
.AGTCTTCTAATTAGC...
.AGTCTTCTAATTAGC...
.AGTCTTCCAATTAGC...
.AGTCTTCTAATTAGC...
..AGTCTTCTAATTAGC...
AGTCTTCTAATTAGC...
..AGTCTTCTAATTAGC...
..AGTCTTCTAATTAGC...
..AGTCTTCCAATTAGC...
.AGTCTTCCAATTAGC...

Variant detection from sequencing data

OK, piece of cake?
Paternal allele (a Maternal allele (A

.AGTCTTCCAATTAGC... AGTCTTCTAATTAGC...

Mapped reads
.AGTCTTCTAATTAGC...
. AGTCTTCTAATTAGC...
..AGTCTTCCAATTAGC...
..AGTCTTCTAATTAGC...
AGTCTTCTAATTAGC...
AGTCTTCTAATTAGC...
..AGTCTTCTAATTAGC...
AGTCTTCTAATTAGC...
.AGTCTTCCAATTAGC...
..AGTCTTCCAATTAGC...

Variant detection from sequencing data

This is what we actually have:

4 Reference sequence
-AG] ..AGTCTTCTAATTAGC... C...

Mapped reads
AGTCTTCTAATTAGC...
.AGTCTTCTAATTAGC...
..AGTCTTCCAATTAGC...
.AGTCTTCTAATTAGC...
AGTCTTCTAATTAGC...
..AGTCTTCTAATTAGC...
.AGTCTTCTAATTAGC...
.AGTCTTCTAATTAGC...
AGTCTTCCAATTAGC...
. AGTCTTCCAATTAGC...

=> need to detect the variant positions in the reference sequence

Variant detection from sequencing data

Standard: GATK (DePristo et al., 2011) or Samtools — works on any mapped
sequencing data.

GATK scores the SNVs by taking into account a number of characteristics,
including:

* Sequencing depth (coverage)

* Mapping quality

* Position bias (base quality)

Specific RNA-seq based tools:

¢ Colib’read — Le Bras et al., 2016
* RVboost —Wang et al., 2014

* ACCUSA2 — Piechotta et al., 2013

GATK the most widely used, even for RNA-seq.
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Variant detection — VCF, Variant Call Format

VCF is a text file format (“flat text”). Example VCF output from GATK:

##£ileformat=vCFva.1l

#CHROM POS  ID REF ALT QUAL FILTER INFO FORMAT SAMPLEl NA12878 [SAMPLEl BLALBA] ...
1873762 . T C 5231.78 PASS [ANNOTATIONS] GT:AD:DP:GQ:PL 0/1:173,141:282:99:255,0,255 ...

1 877664 rs3828047 A G 3931.66 PASS [ANNOTATIONS] GT 94:99:255,255,0. ..
1 899282 rs28548431 C T 71.77 PASS [ANNOTATIONS] GT: :103,0,26 ...

1 974165 rs9442391 T C 29.84 Lowoual [ANNOTATIONS] GT: :14:61:61,0,255...

:DP:GO:PL 0/1:14,

GT: the genotype of this sample at this site (0/0, 0/1, 1/1, 1/2, ...). O=ref., 1=alt.
AD: allele depths, i.e., the number of reads that support each of the reported
alleles

GQ: quality of assigned genotype (max=99)

Full specification of VCF file format: http://samtools.github.io/hts-specs/

Variant detection — which variants to use (prioritization)?

Power at alpha = 0.001

Variants from RNA-seq

* What sequencing depth?
influences the power, see = 3

Heterozygous
Other criteria

.
06

Filtering of known variants 31
* Keep only variants in dbSNP?

Allelic ratio

T T T T T
200 300 400
Sequencing depth

[4] Important ASE considerations:
(b) Mapping bias

Mapping bias
Reference genome variants (“ref.”) have an advantage in the mapping.

Maternal allele: ... ATCGAATGAAGCTCATTGGATCAGAT... (ref.)
Paternal allele: ... ATCGAATGAAGCTTATTGGATCAGAT... (alt.)
Reference: .ATCGAATGAAGCTCATTGGATCAGAT

Mapping of reads

Read from maternal allele: AGCTCATT
Reference: ATCGAATGAAGCTCATTGGATCAGAT
Read from paternal allele: AGCTTATT

The paternal allele read will map with a lower mapping quality.

In case of sequencing error or poor base quality at another position, this
might push the mapping quality of the paternal allele read below the
threshold, and the read will be discarded.

Mapping bias — example in real data

Heterozygous variants (alt/ref) mapped

to reference genome. RNA-seq u SNP-array

X-axis, alternate allele fraction [0, 1]
Y-axis, density -

(Data from 16 RNA-seq experiments;
Variants detected with RNA-seq data
or SNP array).

00 02 o4 o8 o8 10

Alternate allele fraction

Mapping bias — ways to get around it in ASE detection

Masking variants ({A,C,G,T}=>N

You loose information.

Construct all possible versions of the genome from existing variants
Can soon generate a prohibitive amount of genome versions.

Map reads to diploid genome (or transcriptome

Requires that you either have or construct the diploid genome (or
transcriptome) of the individual.

Modfiy the binomial probability p to reflect the mapping bias.
Requires simulation to properly modify p.
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Mapping bias — ways to get around it in ASE detection

Map reads to diploid genome (or transcriptome)

Requires that you either have or construct the diploid genome (or
transcriptome) of the individual. E.g., Turro et al. (2011) (transcriptome).

Modfiy the binomial probability p to reflect the mapping bias.
Requires simulation to properly modify p. E.g., Montgomery et al. (2010).

[4] Important ASE considerations:
(c) Many variants in a gene

Many variants in a gene

More than one variant within a gene is common:

Allele-specific gene

Diploid genome expression (MRNAs)
- A U

T AU
'/ — G6_cC 2 different “haploisoforms”
E! - 6 Cp”

SNV_1 SNV_2 -G=Ce
Y J -
- G C e

Many variants in a gene

RNA-seq contains information that there are two heterozygous SNVs.

Allele-specific gene
Diploid genome

expression (MRNAs) RNA-seq reads
A—U Am

e —_, -
4 -G C
= G C

SNV_1 SNV_2 - G C e

- G— C—

- G C

Variants detected from RNA-seq reads:
* A/G at one locus
* T/Catone locus

Many variants in a gene

But: RNA-seq does not necessarily capture the relation between the two
SNVs.

Allele-specific gene
Diploid genome

expression (MRNAs)
- A U

RNA-seq reads

e,
/? -G C__ >

G C

SNV_1  SNV_2 -G C e

-G C—

- G C—

Possible combinations (haplotypes) from RNA-seq reads:
* A+TandG+C
e A+CandG+T

Many variants in a gene — phasing

Phasing = deciding which alleles that are on the same chromosomal
homologue

Diploid genome

RNA-seq reads

SNV
Possible combinations (haplotypes) from RNA-seq reads:
* A+TandG+C: —A—T and —SG C
* A+CandG+T: —A—C and —&—T \(Z+2different

“haploisoforms”)
But can our RNA-seq reads provide the phase?
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Phasing is useful but not necessary to detect ASE

Phasing information typically achieved by sequencing the genomes of the
parents of the subject. Direct haplotype sequencing also possible.

If you don’t know the phase (and for most RNA-seq data sets, you don’t):

* Trytoinfer it from
(a) your RNA-seq data — possible, but typically only partial phasing
(b) existing population data (LD) — not applicable on new variants

« Disregard from it and calculate ASE anyway

Phasing

* reduces mapping bias

* enables the detection of haploisoform expression (isoforms representing
the two homologous chromosomes)

* butis not necessary to detect ASE in genes with >1 SNV

[5] ASE tools

ASE tools

A list of tools that can detect ASE, given specified input data:

* CcisASE — paired genomic+transcriptomic data, Liu et al., 2016

* MutRSeq — nonsynonomous SNVs from RNA-seq data, Fu et al., 2016
* GeneiASE — unphased RNA-seq data, Edsgard et al., 2016

* ASE-TIGAR - parental data required, bayesian, Nariai et al., 2016

* ASEQ - paired genomic+transcriptomic data, Romanel et al., 2015

* MBASED — phased or unphased RNA-seq data, Mayba et al., 2015

* Allim — parental data required, Pandey et al., 2013

¢ MMSEQ - attempts haploisoform identification, Turro et al., 2011

* (Skelly) — requires phased data, Skelly et al., 2011

* AlleleSeq - requires genomic sequence, Rozowsky et al., 2011
(AlleleDB — database for ASE etc. of 1000genomes, Chen et al., 2016)

ASE tools — where only RNA-seq data from a single
individual is required.

* MutRSeq — nonsynonomous SNVs from RNA-seq data, Fu et al., 2016
* GeneiASE — unphased RNA-seq data, Edsgard et al., 2016

* MBASED - phased or unphased RNA-seq data, Mayba et al., 2015

* MMSEQ — attempts haploisoform identification, Turro et al., 2011

[6] GeneiASE

GeneiASE

GeneiASE detects genes with significant ASE, in single individuals and based
only on RNA-seq data. Haplotype information (phasing) is not needed.

Data required:

* RNA-seq data

Pre-processing required:

* Mapping and quality control of reads

¢ Variant detection (e.g., GATK)

* Filter variants if desired

« Allele counts for variants extracted into custom input text file
Availability:

* Edsgérd et al., Scientific Reports 6:21134, 2016

* https://github.com/edsgard/geneiase (GNU GPL3 license)
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GeneiASE

The situation:
* unphased data Genei SNV_1 SNV_2 SNV_3 SNV..
* non-uniform effect within gene Ref 60 20 70
* technical variability Alt 40 80 30

The GeneiASE solution:

1. For each gene, loop over all its SNVs and their 2x1 matrix of read counts

2. Calculate a test statistic (su) for each SNV, based on read counts

3. Combine the test statistics for the SNVs within a gene => test statistic for
entire gene (g;) asdf

4. Resample from parametric null SNV model (estimated from DNA data) 10°

GeneiASE - calculate SNP-based gene-wise test statistic

1. Count reads for each SNV in a gene; add u-T u T

pseudo counts if required
a 03  _—_ a1|35

A 19|45 A 20|46

2. Calculate SNV test statistic s; based on
absolute value of effect size, eff.

leff off = log(odds(p)), if static-ASE
log(OR(p|i=1.P|t=0)), if icd-ASE

Sij = SE(eff)’

=

.
iila=res

Absolute value of effect size => Undirected effect

times, calculate the resulting distribution of gene test statistic (g%). 3. Calculate gene test statistic g, using —ITHT -
5. Compare g; to g% and calculate a p-value for gene i. Stouffer-Liptak method; k is number of
SNVs in gene i k 1
> sij Effect LT
| ]
GeneiASE — null model, and gene-wise p-value calculation Running GeneiASE - input
— ~B(p=0.49)
0. Estimate SNV null model parameters ~BEE040, p0-0012) |
. DNA based estimate of the technical variability ~ DNAc; .~ Static ASE
ased estimate of the technical variabili < - ) )
¥ ! _/ \‘f ¢ geneiase -cvtl -i cvtl.test.input.tab
For each gene (gene i): 0 02089608 1 gene snp.id alt.dp ref.dp
Lg 10.9 1 4 6
1. Sample allele counts from null SNV model ~BB(p1=0.49, 00012, ) uoT o H s :
Nxkx(1]2) 10:9 a 0 10
(Random effect model) ~ L tys M 9 h
A 1413 109 6 5 5
o 10.9 7 3 7
2. Calculate k SNV test statistic z 109 8 8 2
kg
_ ; . & -
k=number of SNVs in gene i Condmon-degendent ASE
e geneiase -icd -i icd.test.input.tab
3. Calculate gene test statistic
(Stouffer-Liptak) % ?elnle inpm ;.a\l.dp U.ref.dp ;.a\t.dp T.ref.dp
L] 111 2 3 7 4 6
4. Reiterate 1-3 N times (default: 10) ra— m H M H S 3
111 5 6 4 1 9
@ 1 6 9 1 5 s
5. Calculate p-value for gene i ! 111 7 4 6 5 5

Running GeneiASE - output

One line per gene.

Output columns:

« feat: FeaturelD as specified in the input file (typically a gene identifier)
* n.vars: Number of variants within the gene

* mean.s: Mean of s across the variants within the gene

* median.s: Median of s across the variants within the gene

sd.s: Standard deviation of s across the variants within the gene

cv.s: Coefficient of variation of s across the variants within the gene
liptak.s: Stouffer-Liptak combination of s (called g on previous slides)
p.nom: Nominal p-value

fdr: Benjamini-Hochberg corrected p-value

(Reminder: s is the effect size-based test statistic for each SNV in a gene).

Running GeneiASE - results

The number of genes with significant (fdr<0.05) ASE as detected by
GeneiASE from 16 RNA-seq samples (primary white blood cells).
300

<
250 -

N
Q
=]

Number of genes
(with 22 SNVs)
@

o

i
Q
=]

8
L2
L

0 T T T
0 50 100 150 200 250 300
Million mapped high-quality reads




Thank you for your attention

contact: olofem@kth.se
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