RNA-seq read mapping

Pär Engström

SciLifeLab RNA-seq workshop
October 2016

Enabler for Life Sciences

Initial steps in RNA-seq data processing

(for species with a reference genome)

- 1. Quality checks on reads
- 2. Trim 3' adapters (optional)
- 3. Index reference genome
- 4. Map reads to genome (output in SAM or BAM format)
- 5. Convert results to a sorted, indexed BAM file
- 6. Quality checks on mapped reads
- 7. Visualize read mappings on the genome

Followed by further analyses...

Input: sequence reads (FASTQ format)

@HWI-ST1018:7:1101:16910:46835#0/1

CTTCATTTCCCTCCAGTCCCTGGAGGGGCTTCTAGTATTACTGGGACAATGACCACGCTGCCTGTTTGTCTGTGAGTTACGGGCAACCAGCCTC

+

+

+

bbaeeeeegggggiifghiiiiiihfhfhihiifhigihhiiihigggdcecc^accccccccccccccccccccbbaacba`Y @HWI-ST1018:7:1101:15405:122666#0/1

CCCACCTGCAACTTTCCTCCAAGTGTGGCTCGGAGAAGAACATCAACAAGGACCCTGGGCTTCGATTCAAAAAC<mark>TCCTCTGAAGCCATCCATG</mark>

Н

bbbeeeeegggggiiiiiiihiigieghiii_eU_^cbceghffdhhiiicg`\XaZ`ggcdecebcdbb`bcaW_]bbbbcbc^`bbb @HWI-ST1018:7:1101:14326:133684#0/1

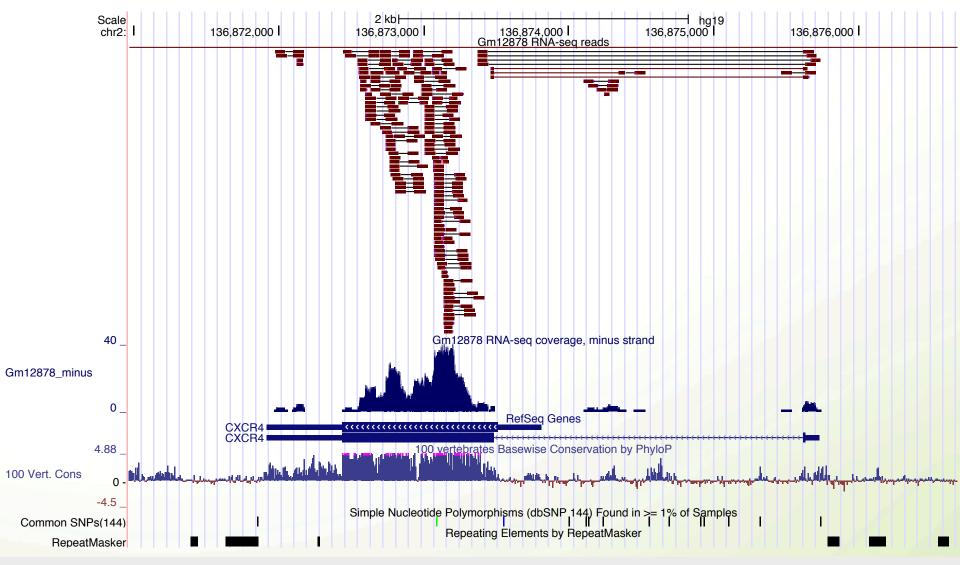
+

^\\cccc^Y[Ybee^bfcegagX_^aeehhheebZPbf_RZeO^_ea]`Ye`[WYY^Q_Xab]ZZ^Z_aY[GY^aNROW^PQXQX`a`XY`P^

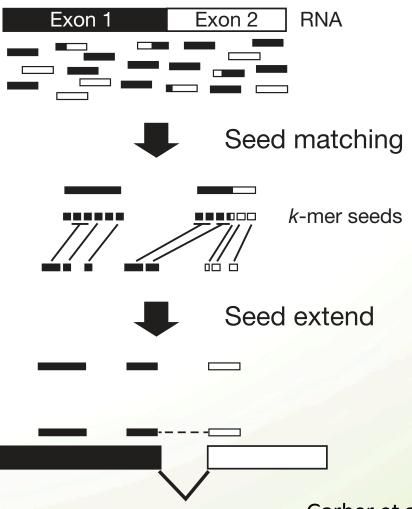
. .

Goal: reads mapped to genome (SAM format)

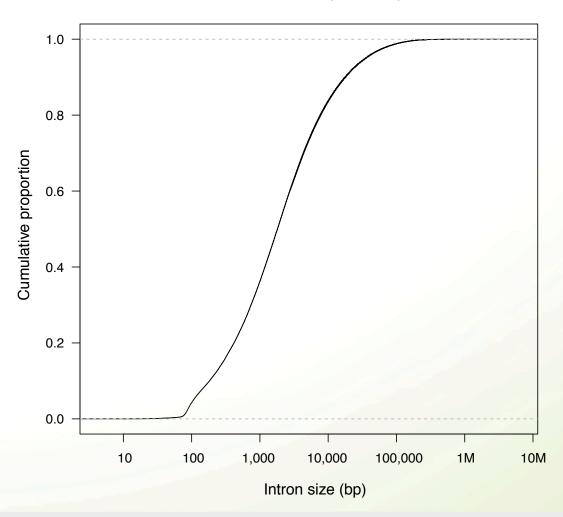
		1 = 0 0 1 0 0 0 1	0	4505-00		
HWI-ST1018:7:1206:3667:137198#0 97	chr1	150812084	255	47M2769)N4'/M'/S	chr2
HWI-ST1018:7:2305:11836:132357#0	177	chr12 13070	0344	255	11S90M	chr2
HWI-ST1018:7:1205:18018:8988#0 97	chr12	51637109	255	96M5S	chr2	733025
HWI-ST1018:7:1103:2457:70159#0 129	chr19	45504799	255	101M	chr2	733155
HWI-ST1018:7:1107:14230:146505#0	99	chr2 73300	0510	255	101M	=
HWI-ST1018:7:1106:16800:63390#0 163	chr2	73300524	255	101M	= -	733006
HWI-ST1018:7:2306:19900:62130#0 99	chr2	73300547	255	101M	=	733007
HWI-ST1018:7:2305:8697:195892#0 163	chr2	73300561	255	4S97M	=	733006
HWI-ST1018:7:1208:10024:50258#0 99	chr2	73300563	255	98M3S		733006
HWI-ST1018:7:1107:14230:146505#0	147	chr2 73300	0572	255	101M	=
HWI-ST1018:7:1208:10123:71500#0 99	chr2	73300593	255	101M		733006
HWI-ST1018:7:2107:11555:46214#0 163	chr2	73300593	255	101M	=	733006
HWI-ST1018:7:1102:12130:87067#0 73	chr2	73300594	255	101M	=	733005
HWI-ST1018:7:1102:12130:87067#0 133	chr2	73300594	0	*	=	733005
HWI-ST1018:7:1206:3667:137198#0 145	chr2	73300602	255	101M	chr1	150812
HWI-ST1018:7:1208:16138:88503#0 99	chr2	73300603	255	101M	=	733007
HWI-ST1018:7:2206:7742:86872#0 163	chr2	73300621	255	101M	=	733006
HWI-ST1018:7:1308:14606:19516#0 99	chr2	73300623	255	1S100M	==-	733008
HWI-ST1018:7:2301:14871:81110#0 99	chr2	73300623	255	101M	=	733007
HWI-ST1018:7:2201:13683:64077#0 145	chr2	73300623	255	11S90M	=	733006



Visualization of read alignments

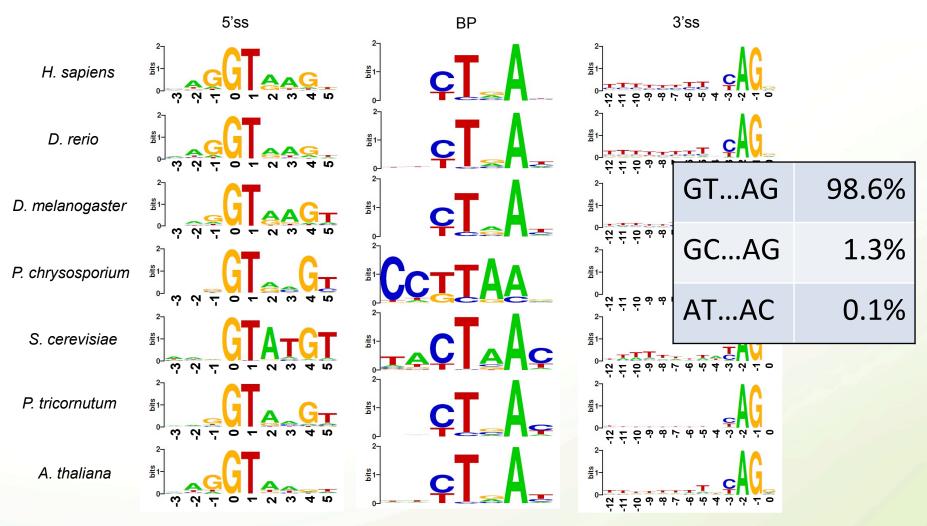


Spliced alignment



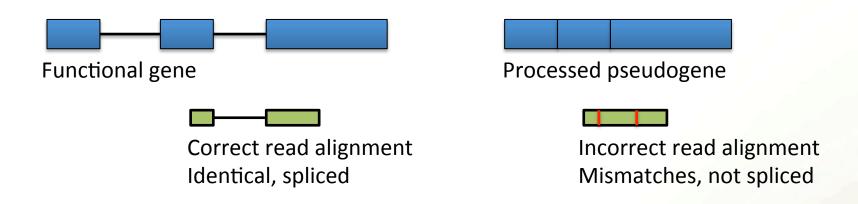
Introns can be very large!

Human introns (Ensembl)



Limited sequence signals at splice sites

Iwata and Gotoh BMC Genomics 2011



Multi-mapping reads and pseudogenes

Note:

- An aligner may report both alignments or either
- Some search strategies and scoring schemes give preference to unspliced alignments

How important is mapping accuracy?

Depends what you want to do:

Allele-specific expression

Genome annotation

Gene and transcript discovery

Differential expression

Current RNA-seq aligners

TopHat2	Kim et al. <i>Genome Biology</i> 2013
HISAT2	Kim et al. Nature Methods 2015
STAR	Dobin et al. <i>Bioinformatics</i> 2013
GSNAP	Wu and Nacu Bioinformatics 2010
OLego	Wu et al. Nucleic Acids Research 2013
HPG aligner	Medina et al. DNA Research 2016
MapSplice2	http://www.netlab.uky.edu/p/bioinfo/MapSplice2

Compute requirements

Program	Run time (min)	Memory usage (GB)			
HISATx1	22.7	4.3			
HISATx2	47.7	4.3			
HISAT	26.7	4.3			
STAR	25	28			
STARx2	50.5	28			
GSNAP	291.9	20.2			
OLego	989.5	3.7			
TopHat2	1,170	4.3			

Run times and memory usage for HISAT and other spliced aligners to align 109 million 101-bp RNA-seq reads from a lung fibroblast data set. We used three CPU cores to run the programs on a Mac Pro with a 3.7 GHz Quad-Core Intel Xeon E5 processor and 64 GB of RAM.

Kim et al. Nature Methods 2015

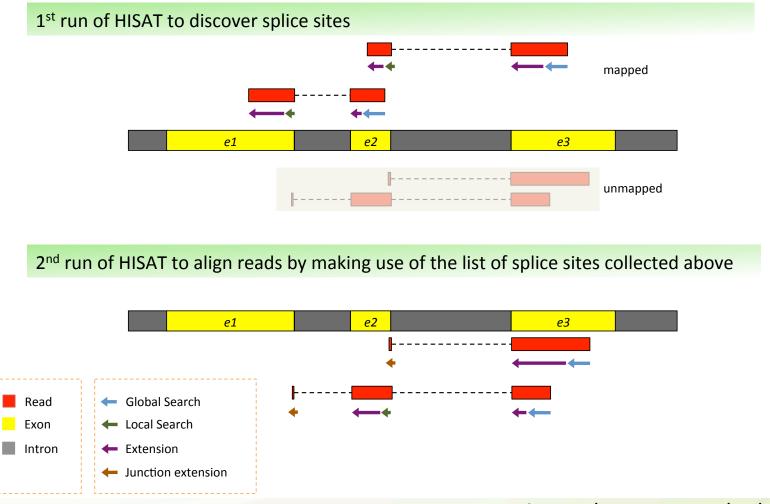
The predecessor: BLAT

"In the process of assembling and annotating the human genome, I was faced with two very large-scale alignment problems: aligning three million ESTs and aligning 13 million mouse whole-genome random reads against the human genome. These alignments needed to be done in less than two weeks' time on a moderate-sized (90 CPU) Linux cluster in order to have time to process an updated genome every month or two. To achieve this I developed a veryhigh-speed mRNA/DNA and translated protein alignment algorithm. "

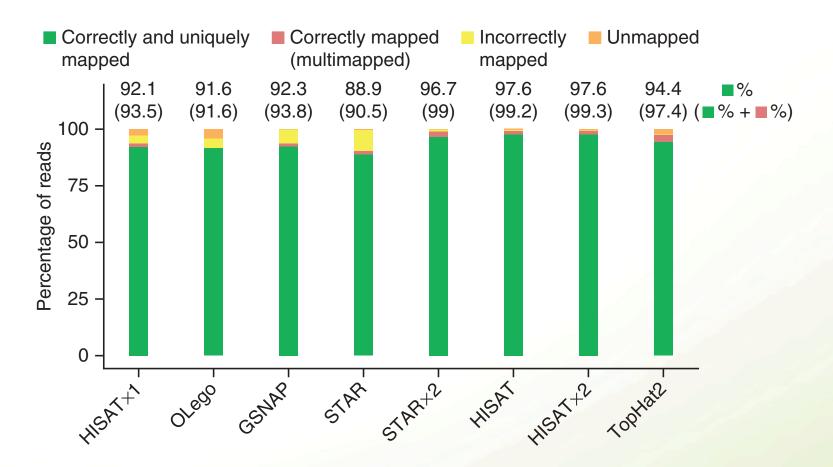
(Kent Genome Research 2002)

Innovations in RNA-seq alignment software

- Read pair alignment
- Consider base call quality scores
- Sophisticated indexing to decrease CPU and memory usage
- Map to genetic variants
- Resolve multi-mappers using regional read coverage
- Consider junction annotation
- Two-step approach (junction discovery & final alignment)



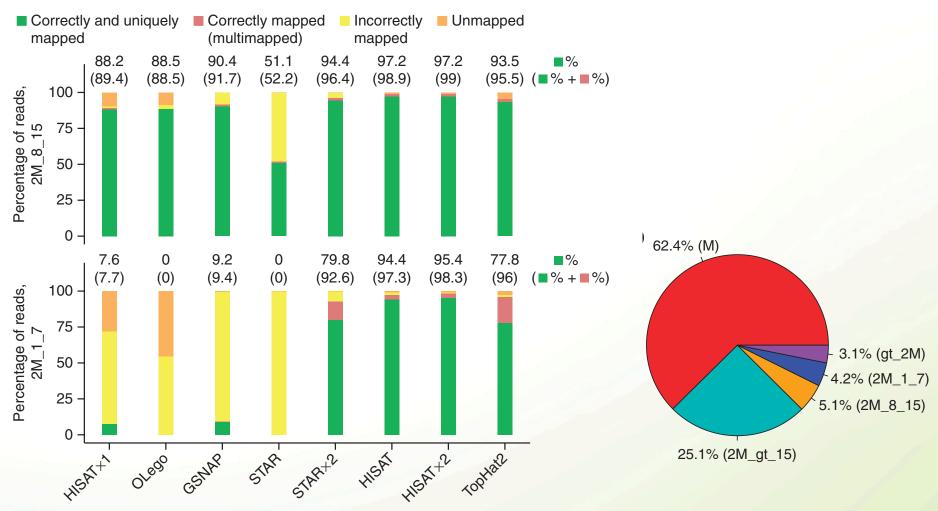
Two-step RNA-seq read mapping



Mapping accuracy

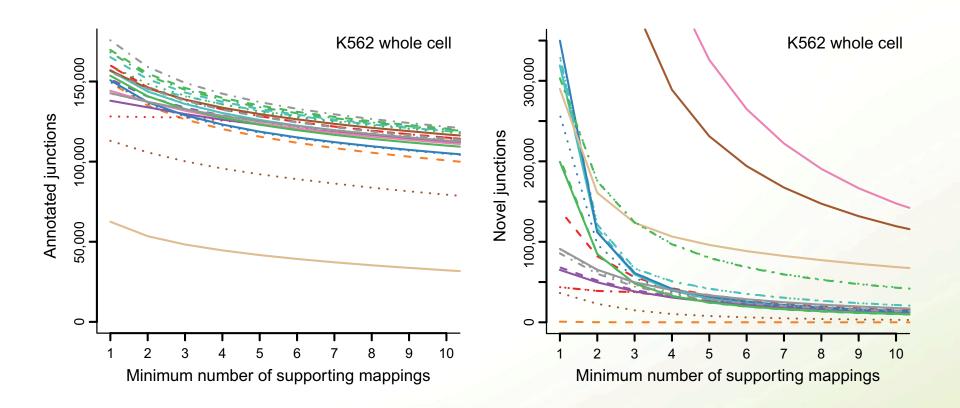
Accuracy for 20 million simulated human 100 bp reads with 0.5% mismatch rate

Kim et al. Nature Methods 2015





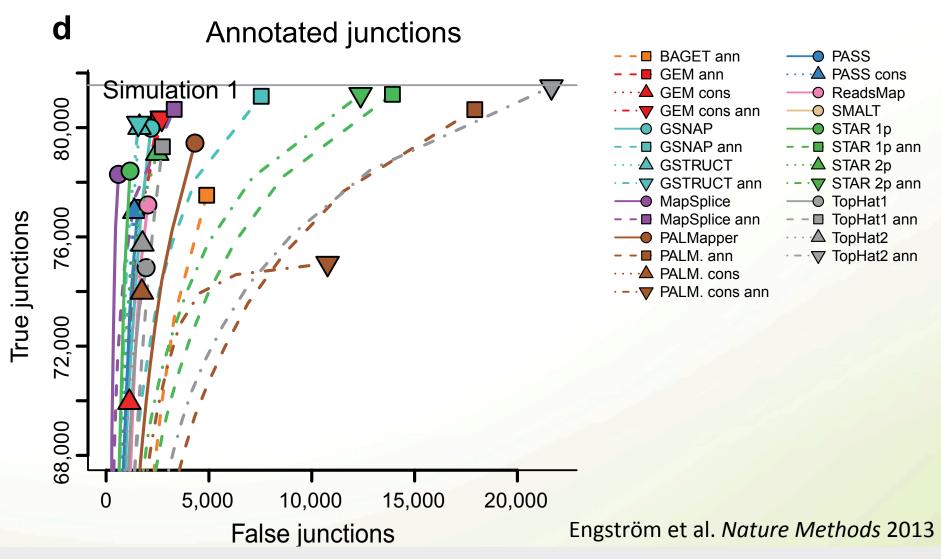
Mapping accuracy for reads with small anchors



Novel junctions are typically supported by few alignments

Each curve represents one RNA-seq read mapping protocol (program + settings).

Engström et al. Nature Methods 2013



Several methods show over-confidence in annotation

Recommendations

- Use STAR, HISAT2 or GSNAP
- STAR and HISAT2 are the fastest
- HISAT2 uses the least memory
- If you want to run Cufflinks, use TopHat2 (but don't)
- Consider 2-pass read mapping (default in HISAT2 and TopHat2)
 - No need to supply annotation to mapper
 - Check that junction discovery criteria are conservative
- HISAT2 and GSNAP can use SNP data, which may give higher sensitivity
- For long (PacBio) reads, STAR, BLAT or GMAP can be used
- Don't trust novel introns supported by single reads
- Always check the results!

Unsolved problems in RNA-seq read mapping

- Determine correct location of multimapping reads
- Accurate alignment of indels
- Use gene annotation in an unbiased fashion
- Cross-species mapping

Browsing your results

Two main browsers:

Integrative Genomics Viewer (IGV)

- + Fast response (runs locally)
- + Easy to load your data (including custom genomes)
- Limited functionality
- User interface issues

UCSC Genome Brower

- Sluggish (remote web site)
- Need to place data on web server (e.g. UPPMAX webexport)
- + Much public data for comparison
- + Good for sharing your data tracks (e.g. using track hubs)

Important SAM fields

Command:

samtools view -X file.bam

Perfectly and uniquely aligned read pair:

HWI-ST1018:3:1305:21090:45397#0 NH:i:1 HI:i:1 AS:i:200 nM:i:0	-	chr1	4426	255	101M	=	4435	110	GT	C@
HWI-ST1018:3:1305:21090:45397#0 NH:i:1 HI:i:1 AS:i:200 nM:i:0	-	chr1	4435	255	101M	=	4426	-110	CG	5<

Problematic read pair:

```
HWI-ST1018:3:2109:6170:66353#0 pPR2s chr1 5058 3 65M36S = 5058 95 CA... B@...

NH:i:2 HI:i:2 AS:i:135 nM:i:9

HWI-ST1018:3:2109:6170:66353#0 pPr1s chr1 5058 3 7873M1D21M = 5058 -95 CC... ##...

NH:i:2 HI:i:2 AS:i:135 nM:i:9
```


Thanks for listening!

