

RNA-Seq course in Uppsala

Transcriptome and isoform reconstruction using long reads

Adam Ameur March 15, 2017

National Genomics Infrastructure

NGI staff: 60 -70 FTE, including head of facility, lab research engineers, bioinformaticians, IT-experts, project coordinators.

UPPMAX/UPPNEX: Uppsala multidisciplinary center for advanced computational science, UPPNEX: UPPmax NEXt generation sequencing Cluster & Storage.

DNA sequencing at all scales

One of the most well-equipped NGS sites in Europe

10 HiSeq Xten, 17 HiSeq 2000/2500, 3 MiSeq, 1 NextSeq, 1 10X Genomics, 1 Ion PGM, 5 Ion Proton, 1 Ion S5XL, 2 PacBio RSII, 1 PacBio Sequel, 2 Sanger ABI3730, 1 BioNano Genomics Irys System, 1 Oxford Nanopore MinIon

Analysis cluster and storage of NGS data

~3 M cpuh/month on a dedicated cluster ~7 PB storage. Long-term storage in archive

RNA-sequencing

with short reads

RNA-seq standard procedure

RNA-seq: the main question

What to do with this?

RNA-seq analysis

Complicating factor: alternative splicing

RNA-seq: problem with short reads

RNA-sequencing

with very long reads!!!

PacBio sequencing

- Long-read sequencing instrument
 - Single molecule sequencing
 - Very long read lengths (up to 30 kb or more)
 - Rapid sequencing
 - Can detect base modifications (e.g. methylation)
 - Two systems: RSII and Sequel

PacBio Sequel

PacBio SMRT - technology

Single Molecule Real Time

PacBio sequencing template

Polymerase Read

Definition:

- Sequence of nucleotides incorporated by polymerase while reading a template
- Includes adapters
- · Often called "read"
- Includes adapters
- 1 molecule, 1 pol. read

Uses:

- QC of instrument run
- Benchmarking

Subread

Definition:

- · Single pass of template
- Adapters removed
- 1 molecule, >=1 subread

Unique data:

- · Kinetic measurements
- Rich QVs

Uses:

Applications

Read (of Insert)

Definition:

- Represents highest-quality single-sequence for an insert, regardless of number of passes
- Generalizes CCS for <2
 passes & RQ <0.9
- 1 or more passes
- 1 molecule, 1 read

Uses:

- Library QC
- Applications

PacBio throughput (spring 2017)

- RSII System ~ 50k reads/SMRT cell
- Sequel System ~ 300k reads/SMRT cell

Polymerase read length:

PacBio's Iso-Seq Method

ארק כל ארכן כל ארכין כל ארכין

CURRENT STATE OF TRANSCRIPT ASSEMBLY

"The way we do RNA-seq now is... you take the transcriptome, you blow it up into pieces and then you try to figure out how they all go back together again... If you think about it, it's kind of a crazy way to do things."

> Michael Snyder Stanford University

Tal Nawy (2013) End-to-end RNA sequencing, Nature Methods 10: 1144–1145

Abigail Yu

Figure 1 | Transcriptome reconstruction—akin to reassembling magazine articles after they have been through a paper shredder.

Ian Korf (2013) Genomics: the state of the art in RNA-seq analysis. *Nature Methods* 10: 1165-1166

אר כן כל ארכן כ

TRANSCRIPT DIVERSITY

DETERMINATION OF TRANSCRIPT ISOFORMS

Full-length cDNA Sequence Reads Splice Isoform Certainty – <u>No Assembly Required</u> ארק כל ארכין כל ארכי

BRCA1 ISOFORMS IN THE MCF-7 DATA

PacBio transcripts capture multiple isoforms of the BRCA1 gene, several of which are novel

IsoSeq: Sample Preparation Workflow

RSII versus Sequel

יסאכן כל אכן כל איכן כל איכן כל איכן כל איכן כל איכן כל איכן כל איכ

CLONTECH SMARTER™ PCR CDNA SYNTHESIS KIT

SIZE DISTRIBUTION OF AMPLIFIED CDNA FROM MULTIPLE TISSUES

ארק כל ארכן כל

EXPERIMENTAL DESIGN CONSIDERATIONS

What are the goals of your application?

- -Targeted or Full Transcriptome
- -Alternative Splicing Analysis
- -Gene Annotation

Is Size Selection needed? What size bins are required?

- Size Selection Yes/No
- Size selection via Agarose Gel or Sage BluePippin or SageELF System

What are the estimated number of Full length transcripts, is this enough to answer my scientific question?

- -RS II: ~20,000 to 25,000 full-length transcript sequences per SMRT Cell
- -Sequel: ~100,000 to 150,000 FL transcript sequences per SMRT Cell
- -Larger size fractions will have a lower percentage of FL reads

PREPARATION WORKFLOW FOR *RSII*

ארק כל ארכן כל

ISO-SEQ SAMPLE PREPARATION WORKFLOW FOR SEQUEL

HOW MANY SMRT CELLS?

<i>RS II</i> SMRT Cells (per sample)	Sequel SMRT Cells (per sample)	Experimental Goals
1	<1	Targeted, gene-specific isoform characterization
1-8	1	General survey of full-length isoforms in a transcriptome (moderate to high expression levels) with or without size selction
12-16	1-2	A comprehensive survey of full-length isoforms in the transcriptome across 3-4 size fractions
>16	2+	Deep sequencing for comprehensive isoform discovery and identification of low abundance transcripts across 3-4 size fractions

Iso-seq data analysis

• Simple: Creates Reads of Inserts for FL transcripts!

Example of a recent Iso-Seq study

ARTICLE

Received 29 Oct 2015 | Accepted 20 Apr 2016 | Published 24 Jun 2016

DOI: 10.1038/ncomms11708

OPEN

Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing

Bo Wang¹, Elizabeth Tseng², Michael Regulski¹, Tyson A. Clark², Ting Hon², Yinping Jiao¹, Zhenyuan Lu¹, Andrew Olson¹, Joshua C. Stein¹ & Doreen Ware^{1,3}

The complexity of the maize transcriptome

Targeted RNA-sequencing with very long reads!!!

Clinical project: Chronic Myeloid Leukemia

• BCR-ABL1 fusion protein – a CML drug target

Traditional mutation screening in BCR-ABL1

Nested PCR and Sanger sequencing:

Limitations:

- Mutations at frequencies below 10-20% not seen
- Biases may be introduced by nested PCR
- Whole BCR-ABL1 fusion transcript not sequenced
- Clonal composition of mutations not determined

BCR-ABL1 workflow – PacBio Sequencing

BMC Cancer

Open Access

Cavelier et al. BMC Cancer (2015) 15:45 DOI 10.1186/s12885-015-1046-y

RESEARCH ARTICLE

Clonal distribution of *BCR-ABL1* mutations and splice isoforms by single-molecule long-read RNA sequencing

Lucia Cavelier^{1+†}, Adam Ameur¹⁺, Susana Häggqvist¹, Ida Höijer¹, Nicola Cahill¹, Ulla Olsson-Strömberg² and Monica Hermanson¹

Background: The evolution of mutations in the *BCR-ABL1* fusion gene transcript renders CML patients resistant to tyrosine kinase inhibitor (TKI) based therapy. Thus screening for *BCR-ABL1* mutations is recommended particularly in patients experiencing poor response to treatment. Herein we describe a novel approach for the detection and surveillance of *BCR-ABL1* mutations in CML patients.

Methods: To detect mutations in the *BCR-ABL1* transcript we developed an assay based on the Pacific Biosciences (PacBio) sequencing technology, which allows for single-molecule long-read sequencing of *BCR-ABL1* fusion transcript molecules. Samples from six patients with poor response to therapy were analyzed both at diagnosis and follow-up. cDNA was generated from total RNA and a 1,6 kb fragment encompassing the *BCR-ABL1* transcript was amplified using long range PCR. To estimate the sensitivity of the assay, a serial dilution experiment was performed.

Results: Over 10,000 full-length *BCR-ABL1* sequences were obtained for all samples studied. Through the serial dilution analysis, mutations in CML patient samples could be detected down to a level of at least 1%. Notably, the assay was determined to be sufficiently sensitive even in patients harboring a low abundance of *BCR-ABL1* levels. The PacBio sequencing successfully identified all mutations seen by standard methods. Importantly, we identified several mutations that escaped detection by the clinical routine analysis. Resistance mutations were found in all but one of the patients. Due to the long reads afforded by PacBio sequencing, compound mutations present in the same molecule were readily distinguished from independent alterations arising in different molecules. Moreover, several transcript isoforms of the *BCR-ABL1* transcript were identified in two of the CML patients. Finally, our assay allowed for a quick turn around time allowing samples to be reported upon within 2 days.

Conclusions: In summary the PacBio sequencing assay can be applied to detect *BCR-ABL1* resistance mutations in both diagnostic and follow-up CML patient samples using a simple protocol applicable to routine diagnosis. The method besides its sensitivity, gives a complete view of the clonal distribution of mutations, which is of importance when making therapy decisions.

BCR-ABL1 mutations at diagnosis

PacBio sequencing generates ~10 000X coverage!

BCR-ABL1 mutations in follow-up sample

Mutations acquired in fusion transcript. Might require treatment with alternative drug.

BCR-ABL1 dilution series results

• Mutations down to 1% detected!

Summary of mutations in 5 CML patients

Mutations mapped to protein structure

BCR-ABL1 - Compound mutations

BCR-ABL1 - Multiple isoforms in one individual!

BCR-ABL1 – Isoforms and protein structure

BCR-ABL1 splice isoforms

>100 different BCR-ABL1 isoforms identified!!!

Isoform expression levels

>20 isoforms found in some samples, most very low expressed!

Clinical Diagnosis of BCR-ABL1 mutations

- Ongoing routine service, 0-4 samples/week.
- Over 120 patient samples run so far
- 100% consistency with Sanger results

Web system for result sharing

Details	Sample	Run ID	Unresolved (count)	Unknown (count)	M244V	Q252H	Y25	3H E255K	E255	/ K262N D27	6G T277A	L298V T	315I T315A M.	51T F359V	L387M	E450G E4	53G E459G	M472I	E499E	Date
		-h- 011 2	(count)	(count)								96	Sample 97 98	New	Search					015-
(91)	R12021	cba_011_2																		9-07
92	R12023	cba_011_3								San	nple ID		Run ID	4		Date 2015 00	17			015- 9-07
(02)	P 12026	cba 011.4								K	12095		cba_012_	4		2013-09	-1/			015-
(33)	R12020	coa_011_4											Downlog	s:						9-07
94	R12091	cba_012_1							Results	<u>s</u>	equence		Details	<u>Clonal</u>	distribution					015- 9-17
(95)	R12092	cb; 012 2					\square													015-
								mutatio	m		s	equence			wt_reads	mut_r ads	other_reads	freq	detection	9-17
96	R12093	cba_012_3						M351T	CAG	CTCAGATCTCO	GTCAGCCA	T/CICGA	GTACCTGGAGA	AGAAAA	16176	19154	3	0.542	positive	9-17
(97)	R12095	cba 012 4				45.2		Q252H	CAG	CAAGCTGGGC	GGGGCCCA	[G/C]TAC	CGGGGGAGGTGT	ACGAGGG	12918	10686	16	0.452	positive	015-
								K262N	GTC	TACGAGCGC	GTGTGGAA	[G/T]AAA	ATACAGCCTGA	CGGTGGC	25673	7035	15	0.215	positive	9-17
98	R12124	cba_013_1						M244V	TGC	ACGCACGG	ACATCACC	[A/G]TGA	AGCACAAGCT	GGGCGGG	32901	33	2	0.001	negative	9-23
(99)	R12125	cba_013_2						K24/K	GGA	TCACCATCA	GAAGCACA	[A/G]GC		CAGIACG	27186	32	9	0.001	negative	015-
								G250F		GAAGCACAA	GCTGGGCC		GCCAGTACGGG	GAGGTGT	23601	8	3	0	negative	015-
(100)	R12123	cba_013_3				l	I	G250E		GARGEREAN		[0//]00	Geenameada	0.00101	25001		5	0	negative	9-23
101	R12126	cba_014_1												_				0	negative	015-
														Frequen	ю		Reads	0	negative	015-
(102)	R12149	cba_014_2																0	negative	9-29
103	R12165	cba_015_1			_						M351T		_	49 9 %	<u>_</u>		9268	0	negative	015-
	-	1 016 1												40.0 /	0		5200	0	negative	015-
104	R12145	cba_016_1					0	2524										0	negative	1-04
105	R12281	cba_017_1			_		Q,							23.8 %	, o		4418	0.001	negative	015-
105	P12282	cha 017 2																0.002	negative	015-
100	K12202	cba_017_2					Q	252H	۲	(262N								0	negative	1-12
107	R12222	cba_018_1						•						17.4 %	0		3245	0	negative	015- 1-18
108	R12291	cba 019 1																0	negative	015-
(108)	K12291	cba_019_1			_		_						_	8 69 %	<u>_</u>		1613	0	negative	2-02
109	R12355	cba_019_2												0.00 /			1010	0	negative	015-2-02
(110)	R12200	cba 020_1																0	negative	015-
	A12200	[^{004_020_1}	I		T			V299L	AGA	ATCAAACACC	CTAACCTG	[G/T]TGC	AGCTCCTTGGG	GTCTGC	30283	2	9	0	negative	2-16
								F311V	ТСТ	GCACCCGGG	AGCCCCCG	T/G]TCT	ATATCATCACT	GAGTTC	27076	1	35	0	negative	<u> </u>

Project II: Hepatitis C Virus Infection

Infection of Hepatitis C (HCV) can cause liver disease

- Direct acting antiviral drugs (DAAs) target the Hepatitis C Virus
- Resistance development in response to DAA treatment
 - Depends on HCV genotype, resistance associated variants, etc...

Results - low frequency mutations

• Example – We can see mutations that were missed by Sanger

• Possible to detect developing mutations at an earlier stage!

HCV Genotyping by SMRT Sequencing

Reference sequences for different genotypes (1a, 1b, 2b, 3a...)

GATGAACCGGCTAATAGCCTTCGCCTCCCGGGGGGAACCATGTTTCCC CCACGCACTACGTGCCGGAGAGCGATGCAGCCGCCCGCGTCACTGC CATACTCAGCAGCCTCACTGTAACCCAGCTCCTGAGGCGACTGCATC AGTGGATAAGCTCGGAGTGTACCACTCCATGCTCCGGTTCCTGGCTAA GGGACATCTGGGACTGGATATGCGAGGTGCTGAGCGACTTTAAGACC TGGCTGAAAGCCAAGCTCATGCCACAACT.....

Genotyping of the Hepatitis C Virus

Distribution of reads in 10 patient samples (NS5B sequencing):

Detailed analyses of mixed HCV infections

- Reads from different HCV genotypes separated into groups
- Resistance mutations analyzed in each genotype!
- Ongoing work: Automation of genotype/mutation calling

Project III: Mutation screening of TP53

Identify low frequency mutations

TP53 results – splice mutations and isoforms

Are there other options?

News and future directions

Nanopore technology - for direct RNA sequencing?

Enables detection of modified RNA bases??

