RNA-seq read mapping

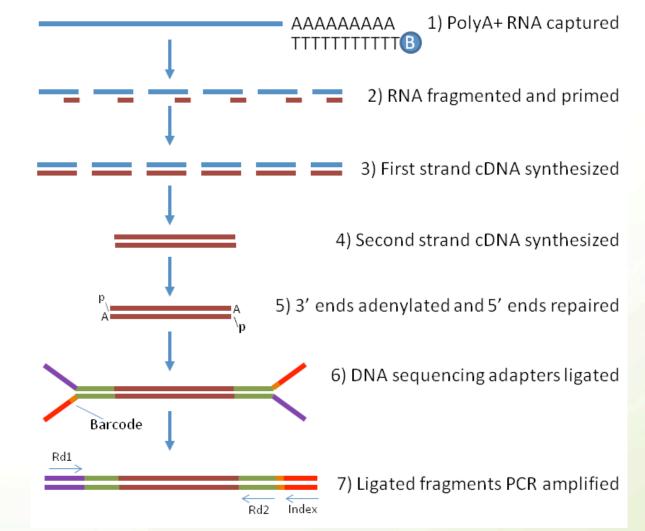
Pär Engström

SciLifeLab RNA-seq workshop March 2017

Enabler for Life Sciences

Initial steps in RNA-seq data processing

(for species with a reference genome)


- 1. Quality checks on reads
- 2. Trim 3' adapters (optional)
- 3. Index reference genome
- 4. Map reads to genome (output in SAM or BAM format)
- 5. Convert results to a sorted, indexed BAM file
- 6. Quality checks on mapped reads
- 7. Visualize read mappings on the genome

Followed by further analyses...

RNA-seq library preparation

http://www.labome.com/method/RNA-seq-Using-Next-Generation-Sequencing.html

Input: sequence reads (FASTQ format)

@HWI-ST1018:7:1101:16910:46835#0/1

CTTCATTTCCCTCCAGTCCCTGGAGGGGGCTTCTAGTATTACTGGGACAATGACCACGCTGCCTGTTTGTCTGTGAGTTACGGGGCAACCAGCCTC +

bbaeeeeegggggiifghiiiiiihfhfhihiifhigihhiiihigggdcecc^{acccccccccccccccccccccb}_bcbccccbbaacba`Y @HWI-ST1018:7:1101:15405:122666#0/1

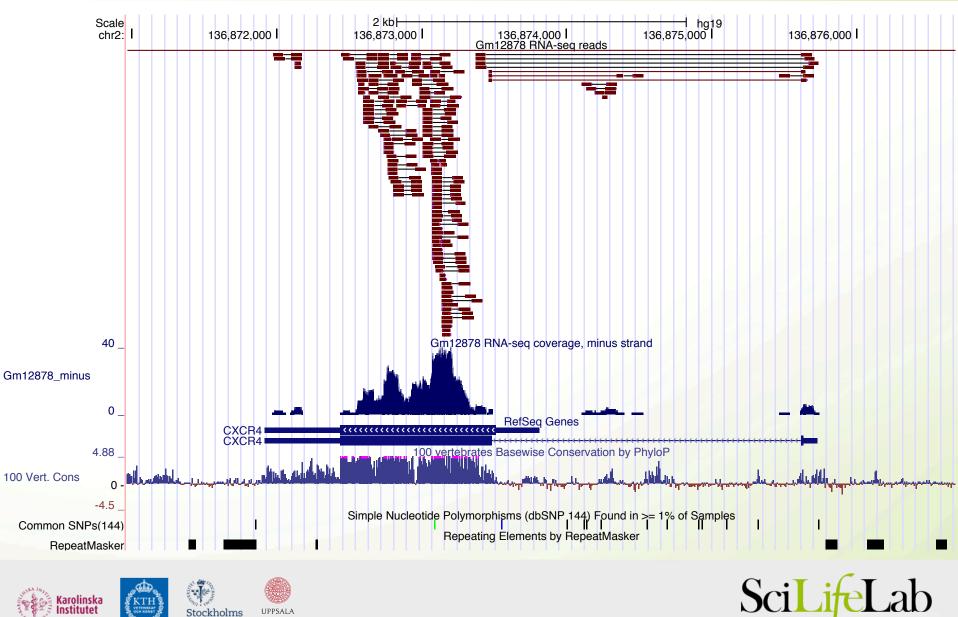
+

bbbeeeeegggggiiiiiiihiigieghiii_eU_^cbceghffdhhiiicg`\XaZ`ggcdecebcdbb`bcaW_]bbbbbcbc^`bbb @HWI-ST1018:7:1101:14326:133684#0/1

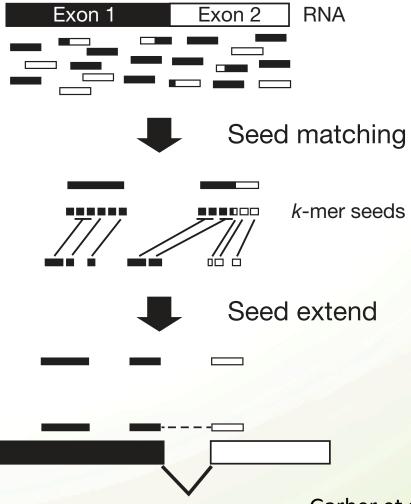
^\\cccc^Y[Ybee^bfcegagX_^aeehhheebZPbf_RZeO^_ea]`Ye`[WYY^Q_Xab]ZZ^Z_aY[GY^aNROW^PQXQX`a`XY`P^ ...

Goal: reads mapped to genome (SAM format)

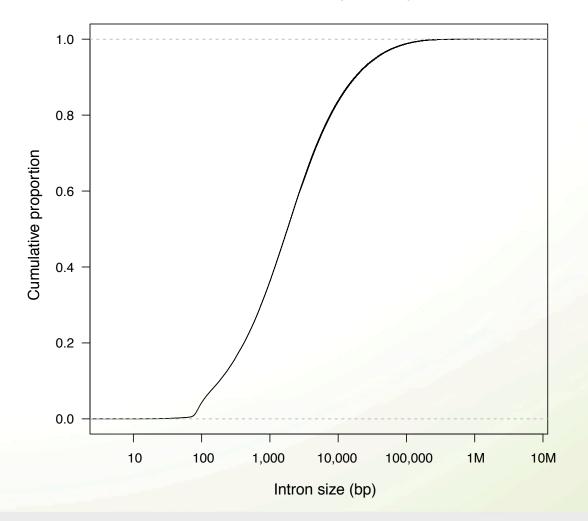
HWT-ST1018:7:1206:3667:137198#0 97 HWI-ST1018:7:2305:11836:132357#0 HWI-ST1018:7:1205:18018:8988#0 97 HWI-ST1018:7:1103:2457:70159#0 129 HWT-ST1018:7:1107:14230:146505#0 HWI-ST1018:7:1106:16800:63390#0 163 HWI-ST1018:7:2306:19900:62130#0 99 HWI-ST1018:7:2305:8697:195892#0 163 HWI-ST1018:7:1208:10024:50258#0 99 HWI-ST1018:7:1107:14230:146505#0 HWI-ST1018:7:1208:10123:71500#0 99 HWI-ST1018:7:2107:11555:46214#0 163 HWT-ST1018:7:1102:12130:87067#0 73 HWI-ST1018:7:1102:12130:87067#0 133 HWI-ST1018:7:1206:3667:137198#0 145 HWI-ST1018:7:1208:16138:88503#0 99 HWI-ST1018:7:2206:7742:86872#0 163 HWI-ST1018:7:1308:14606:19516#0 99 HWI-ST1018:7:2301:14871:81110#0 99 HWI-ST1018:7:2201:13683:64077#0 145


chr1	150812084		255	47M2769N47M7S		chr2
177	chr12	1307034	4	255	11S90M	chr2
chr12	5163710	9	255	96M5S	chr2	733025
chr19	45504799		255	101M	chr2	733155
99	chr2	7330051	0	255	101M	=
chr2	7330052	4	255	101M	=	733006
chr2	7330054	7	255	101M	=	733007
chr2	7330056	1	255	4S97M	=	733006
chr2	7330056	3	255	98M3S	=	733006
147	chr2	7330057	2	255	101M	÷.
chr2	7330059	3	255	101M	=	733006
chr2	7330059	3	255	101M	=	733006
chr2	7330059	4	255	101M	=	733005
chr2	73300594		0	*	=	733005
chr2	73300602		255	101M	chr1	150812
chr2	73300603		255	101M	=	733007
chr2	73300621		255	101M	=	733006
chr2	73300623		255	1S100M	=	733008
chr2	73300623		255	101M	=	733007
chr2	7330062	3	255	11S90M	=	733006

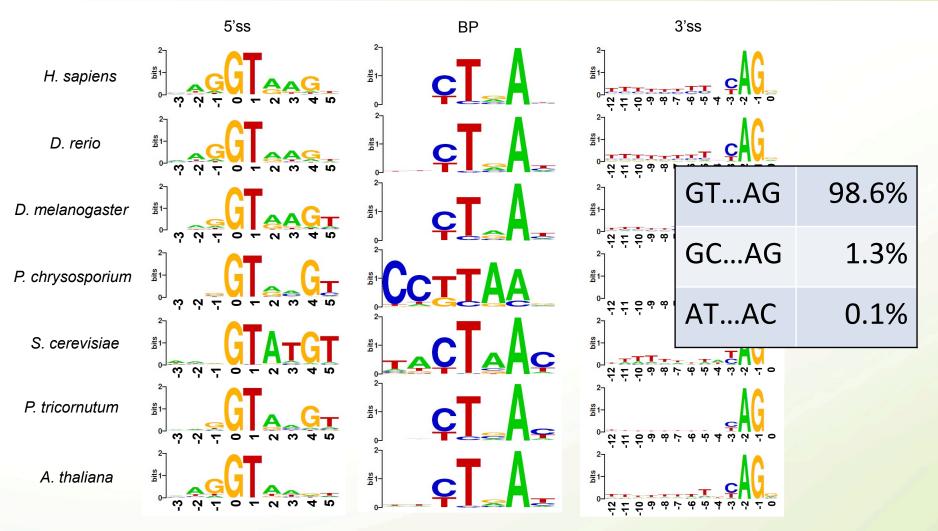
. . .


Visualization of read alignments

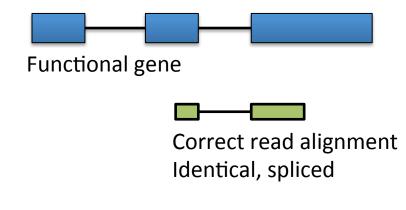
Spliced alignment


Garber et al. Nature Methods 2011

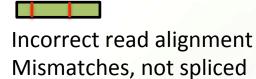
Introns can be very large!


Human introns (Ensembl)

Limited sequence signals at splice sites



Iwata and Gotoh BMC Genomics 2011



Multi-mapping reads and pseudogenes

Processed pseudogene

Note:

- An aligner may report both alignments or either
- Some search strategies and scoring schemes give preference to unspliced alignments

How important is mapping accuracy?

Depends what you want to do:

Identify novel genetic variants or RNA editing

Allele-specific expression

Genome annotation

Gene and transcript discovery

Differential expression

Importance

Current RNA-seq aligners

TopHat2	Kim et al. Genome Biology 2013		
HISAT2	Kim et al. Nature Methods 2015		
STAR	Dobin et al. Bioinformatics 2013		
GSNAP	Wu and Nacu Bioinformatics 2010		
OLego	Wu et al. Nucleic Acids Research 2013		
HPG aligner	Medina et al. DNA Research 2016		
MapSplice2	http://www.netlab.uky.edu/p/bioinfo/MapSplice2		

Compute requirements

Program	Run time (min)	Memory usage (GB)
HISATx1	22.7	4.3
HISATx2	47.7	4.3
HISAT	26.7	4.3
STAR	25	28
STARx2	50.5	28
GSNAP	291.9	20.2
OLego	989.5	3.7
TopHat2	1,170	4.3

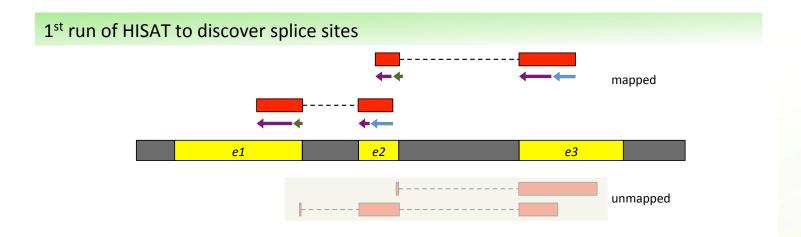
Run times and memory usage for HISAT and other spliced aligners to align 109 million 101-bp RNA-seq reads from a lung fibroblast data set. We used three CPU cores to run the programs on a Mac Pro with a 3.7 GHz Quad-Core Intel Xeon E5 processor and 64 GB of RAM.

Kim et al. Nature Methods 2015

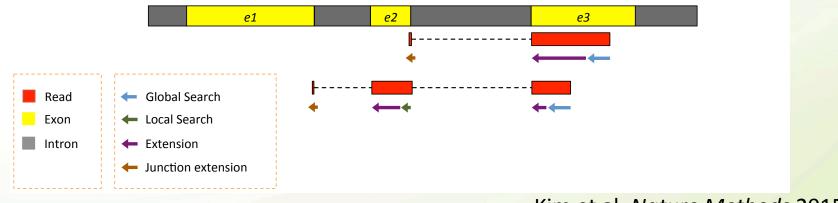
The predecessor: BLAT

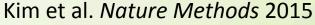
"In the process of assembling and annotating the human genome, I was faced with two very large-scale alignment problems: aligning three million ESTs and aligning 13 million mouse whole-genome random reads against the human genome. These alignments needed to be done in less than two weeks' time on a moderate-sized (90 CPU) Linux cluster in order to have time to process an updated genome every month or two. To achieve this I developed a veryhigh-speed mRNA/DNA and translated protein alignment algorithm. "

(Kent Genome Research 2002)


Innovations in RNA-seq alignment software

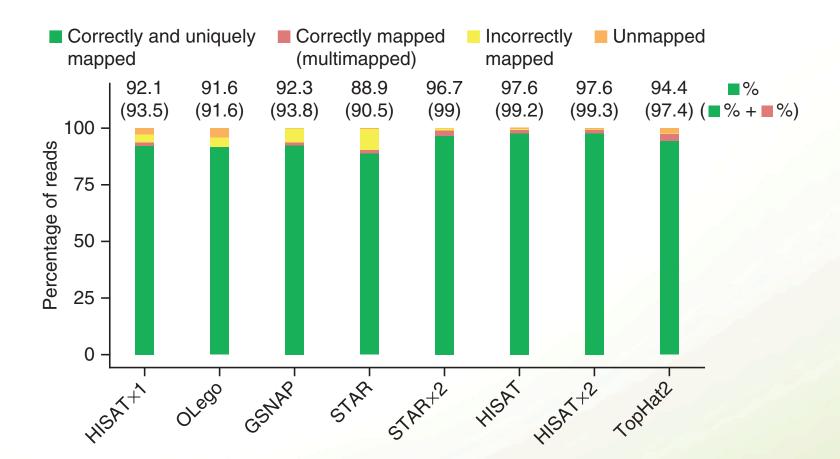
- Read pair alignment
- Consider base call quality scores
- Sophisticated indexing to decrease CPU and memory usage
- Map to genetic variants
- Resolve multi-mappers using regional read coverage
- Consider junction annotation
- Two-step approach (junction discovery & final alignment)



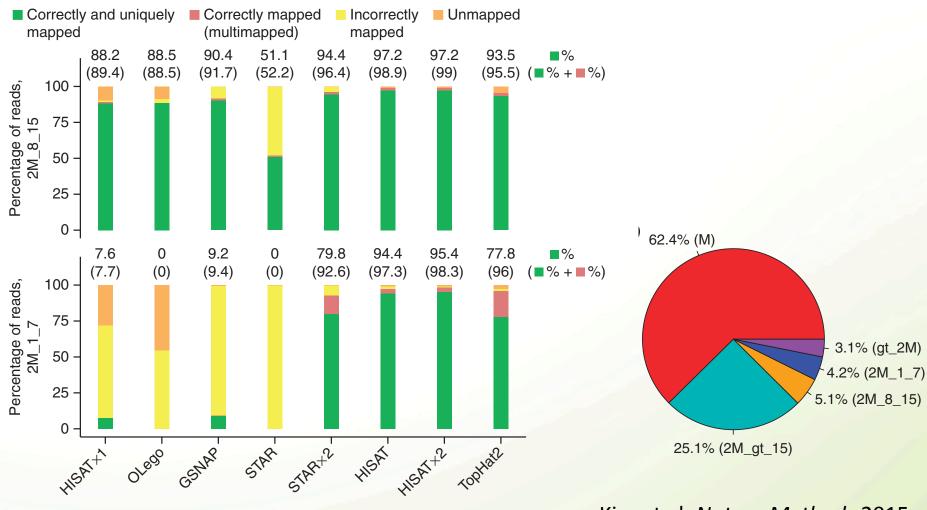


Two-step RNA-seq read mapping

2nd run of HISAT to align reads by making use of the list of splice sites collected above

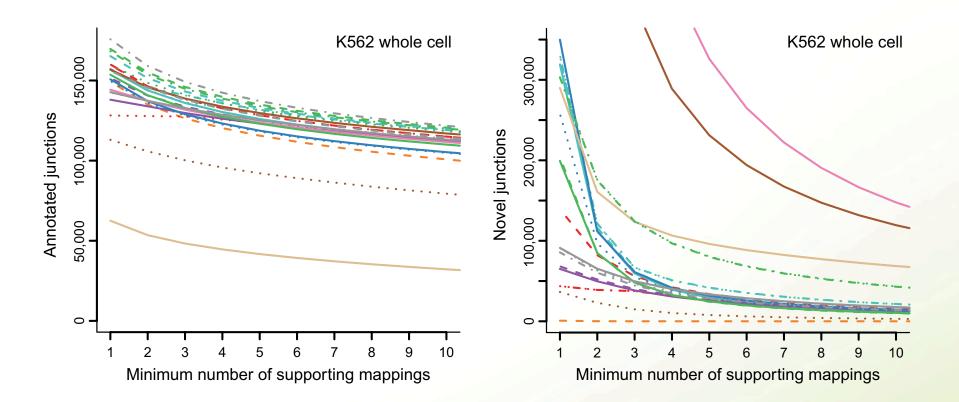


Mapping accuracy


Accuracy for 20 million simulated human 100 bp reads with 0.5% mismatch rate

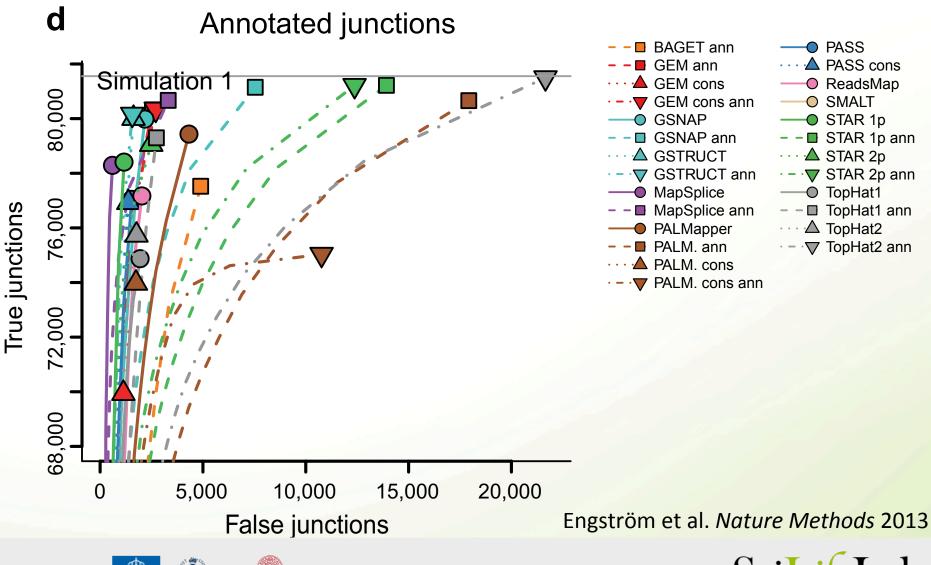
Kim et al. Nature Methods 2015

Mapping accuracy for reads with small anchors



Kim et al. Nature Methods 2015

Novel junctions are typically supported by few alignments


Each curve represents one RNA-seq read mapping protocol (program + settings).

Engström et al. Nature Methods 2013

Several methods show over-confidence in annotation

SciLifeLab

Recommendations

- Use STAR, HISAT2 or GSNAP
- STAR and HISAT2 are the fastest
- HISAT2 uses the least memory
- If you want to run Cufflinks, use TopHat2 (but don't)
- Consider 2-pass read mapping (default in HISAT2 and TopHat2)
 - No need to supply annotation to mapper
 - Check that junction discovery criteria are conservative
- HISAT2 and GSNAP can use SNP data, which may give higher sensitivity
- For long (PacBio) reads, STAR, BLAT or GMAP can be used
- Don't trust novel introns supported by single reads
- Always check the results!

Inspecting a BAM file

Command:

samtools view -X file.bam

Paper:

Li et al. (2009) The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25:2078-9

SAM format specification:

https://samtools.github.io/hts-specs/

Visualizing reads mapped to genome

Two main browsers:

Integrative Genomics Viewer (IGV)

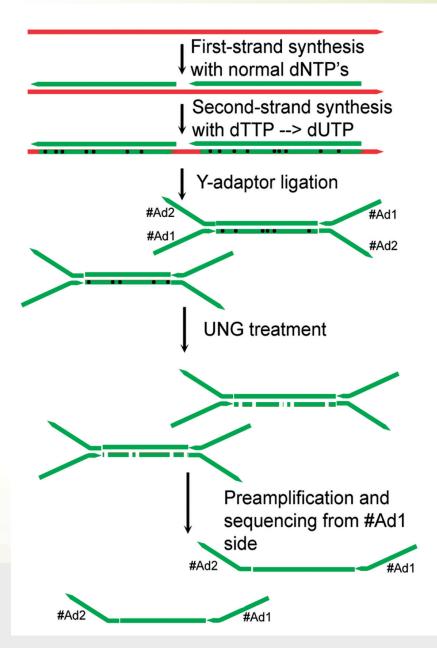
- + Fast response (runs locally)
- + Easy to load your data (including custom genomes)
- Limited functionality
- User interface issues

UCSC Genome Brower

- Sluggish (remote web site)
- Need to place data on web server (e.g. UPPMAX webexport)
- + Much public data for comparison
- + Good for sharing your data tracks (e.g. using track hubs)

Unsolved problems in RNA-seq read mapping

- Determine correct location of multimapping reads
- Accurate alignment of indels
- Use gene annotation in an unbiased fashion
- Cross-species mapping



Thanks for listening!

The dUTP method for strand-specific RNA-seq

Parkhomchuk et al. *Nucleic Acids Research* 2011 Borodina et al. *Methods in Ezymology* 2011

Important SAM fields

Command:

samtools view -X file.bam

Perfectly and uniquely aligned read pair:

HWI-ST1018:3:1305:21090:45397#0 pPR1 chr1 4426 255 101M = 4435 110 GT... C@... NH:i:1 HI:i:1 AS:i:200 nM:i:0

HWI-ST1018:3:1305:21090:45397#0 pPr2 chr1 4435 255 101M = 4426 -110 CG... 5<... NH:i:1 HI:i:1 AS:i:200 nM:i:0

Problematic read pair:

HWI-ST1018:3:2109:6170:66353#0 pPR2s chr1 5058 3 65M36S = 5058 95 CA... B@... NH:i:2 HI:i:2 AS:i:135 nM:i:9

HWI-ST1018:3:2109:6170:66353#0 pPr1s chr1 5058 3 7S73M1D21M = 5058 -95 CC... ##... NH:i:2 HI:i:2 AS:i:135 nM:i:9

