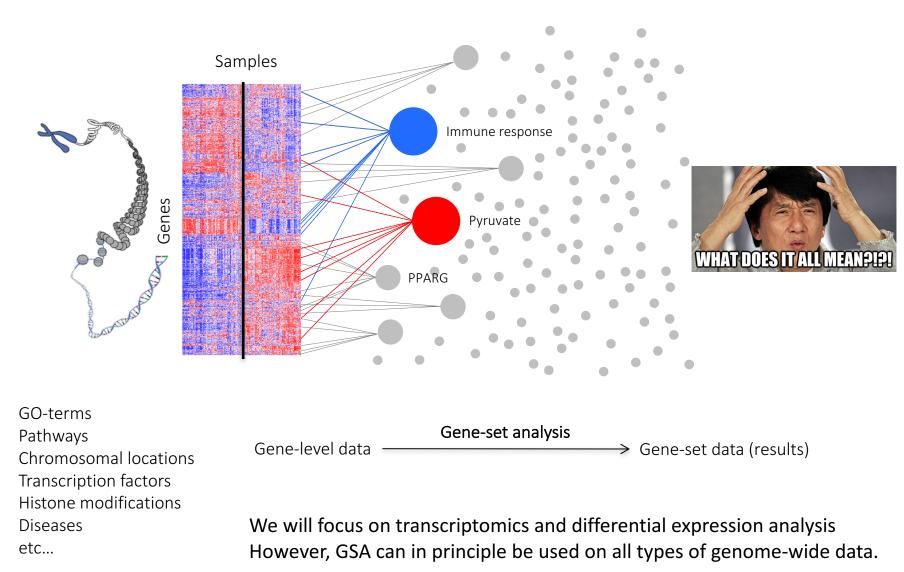


Gene-set analysis and data integration


Leif Wigge

leif.wigge@scilifelab.se

Bioinformatics Long-term Support (WABI) Systems Biology Facility @ Chalmers Outline


- Gene-set analysis What and why?
- Gene-set collections
- Methods for GSA
- Gene-set directionality, overlap/interactions, biases
- Things to consider

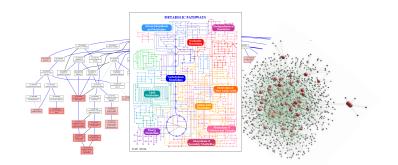
Will try to be practical, without getting to the detail of code-level

What is gene-set analysis (GSA)?

Sci

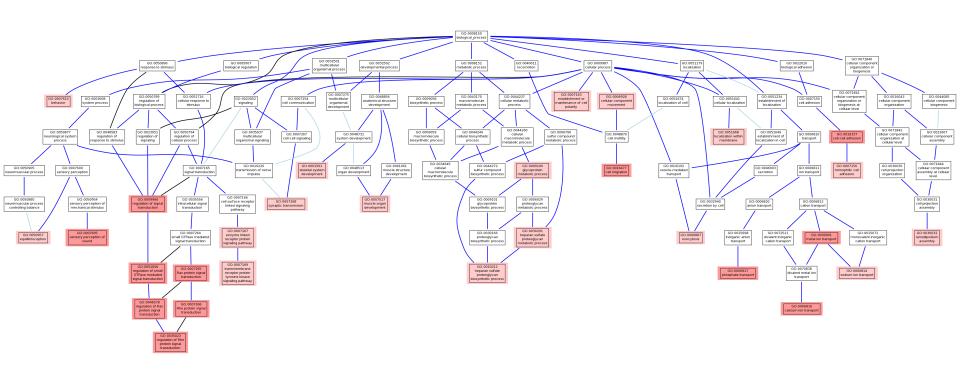
Many names for gene-set analysis (GSA)

- Functional annotation
- Pathway analysis
- Gene-set enrichment analysis
- GO-term analysis
- Gene list enrichment analysis
- ...


Interpretation of genome-wide results

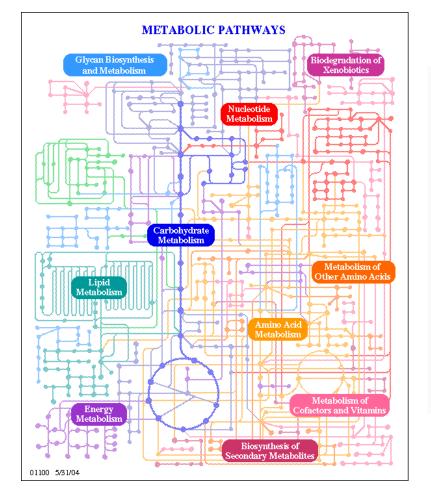
- Gene-sets are (typically) fewer than all the genes and have more descriptive names
- Difficult to manage a long list of significant genes
- Detect patterns that would be difficult to discern simply by manually going through e.g. the list of differentially expressed genes
- Top genes might not be the interesting ones, several coordinated smaller changes
- Integrates external information into the analysis
- Less prone to false-positives on the gene-level

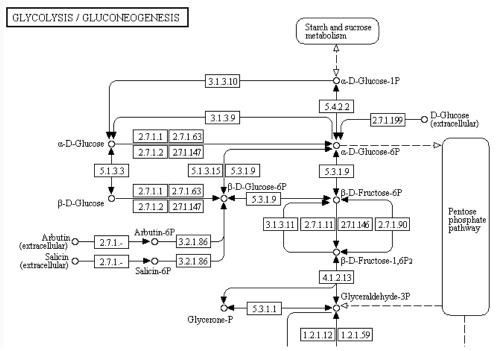
Gene-sets



- Depends on the research question
- Several databases/resources available providing gene-set collections (e.g. MSigDB, Enrichr)
- Included directly in some analysis tools
- GO-terms are probably one of the most widely used gene-sets
 - GO-terms Pathways Chromosomal locations Transcription factors Histone modifications Diseases Metabolites etc...

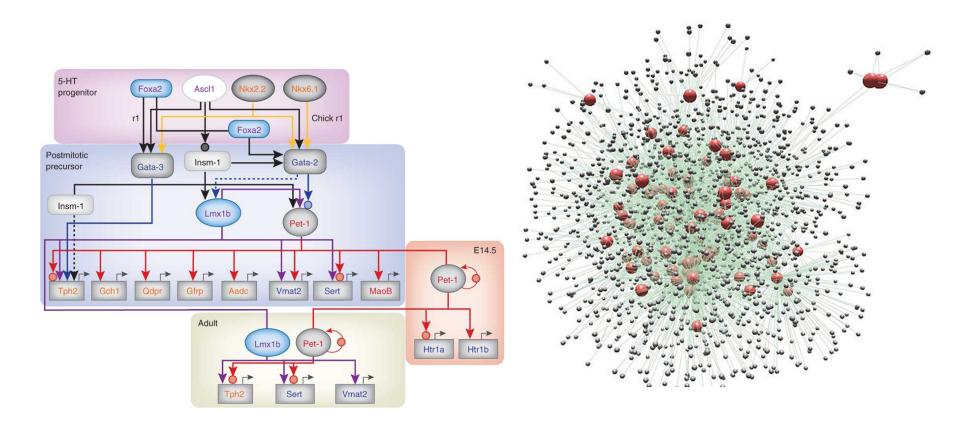
Gene-set example: Gene ontology (GO) terms

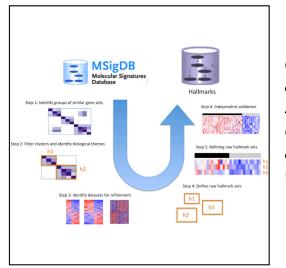




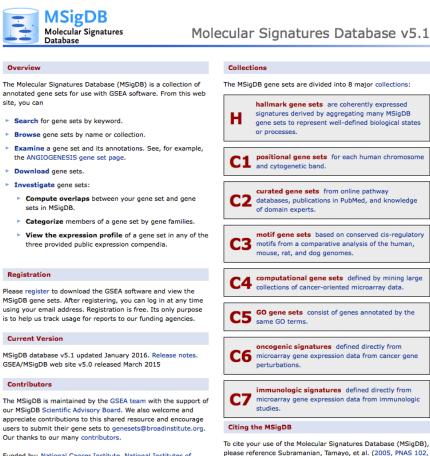
- Hierarchical graph with three categories (or parents): Biological process, Molecular function, Cellular compartment
- Terms get more and more detailed moving down the hierarchy
- Genes can belong to multiple GO terms

Gene-set example: Metabolic pathways or metabolites





Gene-set example: Transcription factor targets


"Hallmark gene sets summarize and represent specific well-defined biological states or processes and display coherent expression. These gene sets were generated by a computational methodology based on identifying gene set overlaps and retaining genes that display coordinate expression. The hallmarks reduce noise and redundancy and provide a better delineated biological space for GSEA."

http://software.broadinstitute.org/gsea/msigdb/collections.jsp

Liberzon et al. (2015) Cell Systems 1:417-425

Where to get gene-set collections?

http://software.broadinstitute.org/gsea/msigdb/index.jsp

the gene set page.

15545-15550) and also the source for the gene set as listed on

http://amp.pharm.mssm.edu/Enrichr/#stats

Enrichr

Analyze What's New? Libraries

Find a Gene About Help

Gene-set Library	Terms	Gene Coverage	Genes per Term	
Achilles_fitness_decrease	216	4271	128.0	<u>+</u>
Achilles_fitness_increase	216	4320	129.0	4
Aging_Perturbations_from_GEO_down	286	16129	292.0	<u>.</u>
Aging_Perturbations_from_GEO_up	286	15309	308.0	*
Allen_Brain_Atlas_down	2192	13877	304.0	<u>±</u>
Allen_Brain_Atlas_up	2192	13121	305.0	*
BioCarta_2013	249	1295	18.0	<u>.</u>
BioCarta_2015	239	1678	21.0	<u>.</u>
BioCarta_2016	237	1348	19.0	<u>.</u>
Cancer_Cell_Line_Encyclopedia	967	15797	176.0	4
ChEA_2013	353	47172	1370.0	<u>.</u>
ChEA_2015	395	48230	1429.0	<u>.</u>
Chromosome_Location	386	32740	85.0	<u>.</u>
CORUM	1658	2741	5.0	4
dbGaP	345	5613	36.0	<u>.</u>
Disease_Perturbations_from_GEO_down	839	23939	293.0	4
Disease_Perturbations_from_GEO_up	839	23561	307.0	<u>±</u>
Disease_Signatures_from_GEO_down_2014	142	15406	300.0	<u>.</u>
Disease_Signatures_from_GEO_up_2014	142	15057	300.0	<u>±</u>
Drug_Perturbations_from_GEO_2014	701	47107	509.0	±
Drug_Perturbations_from_GEO_down	906	23877	302.0	±
Drug_Perturbations_from_GEO_up	906	24350	299.0	±
ENCODE_and_ChEA_Consensus_TFs_from_ChIP-X	104	15562	887.0	±
ENCODE_Histone_Modifications_2013	109	15852	912.0	±
ENCODE_Histone_Modifications_2015	412	29065	2123.0	<u>.</u>
ENCODE_TF_ChIP-seq_2014	498	21493	3713.0	4
ENCODE_TF_ChIP-seq_2015	816	26382	1811.0	<u>±</u>
Epigenomics_Roadmap_HM_ChIP-seq	383	22288	4368.0	±
ESCAPE	315	25651	807.0	±
Genes_Associated_with_NIH_Grants	32876	15886	9.0	±
GeneSigDB	2139	23726	127.0	<u>.</u>
Genome Browser PWMs	615	13362	275.0	*

Parsed info from various databases. Focus on human.

Overview

site, you can

Database

- Investigate gene sets:
 - Compute overlaps between your gene set and gene sets in MSigDB.
 - Categorize members of a gene set by gene families.
 - View the expression profile of a gene set in any of the three provided public expression compendia.

Registration

Please register to download the GSEA software and view the MSigDB gene sets. After registering, you can log in at any time using your email address. Registration is free. Its only purpose is to help us track usage for reports to our funding agencies.

Current Version

MSigDB database v5.1 updated January 2016. Release notes. GSEA/MSigDB web site v5.0 released March 2015

Contributors

The MSigDB is maintained by the GSEA team with the support of our MSigDB Scientific Advisory Board. We also welcome and appreciate contributions to this shared resource and encourage users to submit their gene sets to genesets@broadinstitute.org. Our thanks to our many contributors.

Funded by: National Cancer Institute, National Institutes of Health, National Institute of General Medical Sciences,

Login | Register

1,052,595 lists analyzed

Not working with human data?

A Selection of Gene Set Databases

	Canonical	Functionally-related gene	Gene/protein	
Database	pathways	sets	interactions	Links/references
Pathway	х			pathwaycommons.org, [Cerami et al., 2011]
Commons				
PathCards	х			pathcards.genecards.org, [Belinky et al., 2015]
KEGG	х			genome.jp/kegg, [Kanehisa and Goto, 2000; Kanehisa et al., 2014]
Reactome	х			reactome.org, [Croft et al., 2014]
Biocarta	х			biocarta.com
Panther	х	х		pantherdb.org/data, [Mi et al., 2013]
NCI-PID	х			pid.nci.nih.gov, [Schaefer et al., 2009]
MSigDB	х	х		broadinstitute.org/gsea/msigdb, [Subramanian et al., 2005]
ConsensusPathDB	х		х	consensuspathdb.org, [Kamburov et al., 2013]
Gene Ontology		х		geneontology.org, [Ashburner et al., 2000; Gene Ontology
				Consortium, 2010]
STRING			х	string-db.org, [Franceschini et al., 2013]
HPRD			х	hprd.org, [Prasad et al., 2009]
Metacore*	х	х	х	thomsonreuters.com/metacore
Ingenuity*	х	х	х	ingenuity.com/products/ipa

*Proprietary database.

doi: <u>10.1002/ajmg.b.32328</u>

• GO annotations for many species

http://geneontology.org/page/download-annotations

clusterProfiler (R/Bioconductor package)
 http://bioconductor.org/packages/devel/bioc/vignettes/clusterProfiler/inst/doc/clusterProfiler.html#go-gene-set-enrichment-analysis

- SciLifeLab
- Sooner or later you will run into the problem of matching your data to gene-set collections due to the existence of several gene ID types

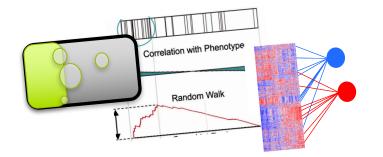
protein secretion (GO:0009306) ABCA1 PLEK NLRC4 LTBP2 PCSK5 ARFGAP3 ARL4D BACE2 CANX NECAB3 PDIA4 rRNA transcription (GO:0009303) GTF3C2 GTF3C3 GTF3C4 GTF3C5 GTF3C6 RNASEK BRF1 GTF3A CD3EAP MKI67IP GTF3C1 positive regulation of DNA replication (GO:0045740) INSR PDGFRA EPO TGFB3 SHC1 PLA2G1B CSF2 TNKS respiratory burst (GO:0045730) CD52 CYBB CYBA NCF1 NOX1 CD24 CD55 NCF2 PGAM1 positive regulation of protein catabolic process (GO:0045732) EGLN2 FURIN HDAC2 F12 TNF SMAD7 CLN6 positive regulation of DNA repair (GO:0045739) PRKCG EYA1 MERIT40 EYA3 CEBPG H2AFX BRCC3 BRCA1 RNF8 negative regulation of adenylate cyclase activity (GO:0007194) CCR2 GABBR2 GABBR1 NPY1R OPRK1 ADRA2A CORT DRD2 DRD3 DRD4 inhibition of adenylate cyclase activity by G-protein signaling (GO:0007193) CHRM5 NPY2R NPY1R OPRK1 OPRL1 regulation of transcription factor activity (GO:0051090) NFAM1 IL10 SIRT1 PEX14 AGT SMARCA4 FOXP3 TNF NLRC3 MTDH PYCARD ABRA FLNA NLRP3 RPS3 RIPK1 CARD11 EGLN1 NPM1 STK36 IRAK2 IRAK3 IRAK1 BCL10 EDA2R CREBZF IKBKB PRDX3 SUMO1 EP300 ERC1 TNFRSF4 IL6R MEN1 activation of adenylate cyclase activity (GO:0007190) CAP2 NTRK2 CAP1 CRHR1 GIPR P2RY11 NTRK1 AVPR2 positive regulation of transcription factor activity (GO:0051091) NPM1 IL10 SMARCA4 CARD11 NFAM1 AGT NOD2 TNF EDA2R NLRC3 MTDH PYCARD IKBKB ABRA PRDX3 IRAK3 EP300 IRAK1 ERC1 RIPK1 IL6R positive regulation of NF-kappaB transcription factor activity (GO:0051092) CARD11 NPM1 AGT IL1B IL6 PRDX3 IRAK3 IRAK1 ERC1 RIPK1 IL6R

> head(res)
log2 fold change (MAP): timepoint t24h vs ctrl
Wald test p-value: timepoint t24h vs ctrl
DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG000000003 4	88.9141058	0.89327988	0.10613362	8.4165589	3.877042e-17	3.077290e-16
ENSG0000000419 8	16.5442744	-0.19601877	0.09887579	-1.9824748	4.742612e-02	8.740280e-02
ENSG0000000457	81.9349878	0.30293405	0.20363836	1.4876080	1.368543e-01	2.182234e-01
ENSG0000000460 3	55.7964356	-1.83662295	0.12101968	-15.1762333	5.081360e-52	1.569737e-50
ENSG0000000971	0.5328727	-0.02963864	0.28670478	-0.1033769	9.176639e-01	9.460059e-01
ENSG0000001036 9:	18.3238933	-0.35428837	0.08228014	-4.3058795	1.663236e-05	5.415768e-05
>						

Where to get gene-set collections?

http://www.ensembl.org/biomart/martview


C <mark>l</mark> Ensembl _{₿IA}	ST/BLAT BioMart Tools Downloads Help & Documentation Blog M	Mirrors	
New Gount Results			🖕 URL 🖪 XML 🖉 Pe
Dataset	Export all results to	File	S TSV S Unique resul
Homo sapiens genes (GRCh38.p5)	Email notification to		
Filters			
[None selected]	View	200 💿 rows as 🛛 html 📀 🗹	Unique results only
Attributes			4000
Attributes Ensembl Gene ID GO Term Name Associated Gene Name EntrezGene ID	ENSG00000198763 NADH dehydrogenase (ubiquinone) activity	MT-ND2	4536
	ENSG00000198763 mitochondrial electron transport, NADH to ubiquinone		4536
	ENSG00000198763 mitochondrial inner membrane	MT-ND2	4536
	ENSG00000198763 cellular metabolic process	MT-ND2	4536
	ENSG00000198763 oxidation-reduction process	MT-ND2	4536
	ENSG00000198763 integral component of membrane ENSG00000198763 mitochondrion	MT-ND2 MT-ND2	4536 4536
	ENSG00000198763 reactive oxygen species metabolic process	MT-ND2	4536
Dataset	ENSG00000198763 protein kinase binding	MT-ND2	4536
None Selected]	ENSG00000198763 ionotropic glutamate receptor binding	MT-ND2	4536
tone beleated	ENSG00000198763 postsynaptic density	MT-ND2	4536
	ENSG00000198804 respiratory chain complex IV	MT-CO1	4512
	ENSG00000198804 aerobic respiration	MT-CO1	4512
	ENSG00000198804 oxidative phosphorylation	MT-CO1	4512
	ENSG00000198804 gene expression	MT-CO1	4512
	ENSG00000198804 small molecule metabolic process	MT-CO1	4512
	ENSG0000198804 cytochrome-c oxidase activity	MT-CO1	4512
	ENSG00000198804 protein binding	MT-CO1	4512

One way to map different gene IDs to each other, or to assemble a gene-set collection with the gene IDs used by your data

See also: DAVID <u>https://david.ncifcrf.gov/content.jsp?file=conversion.html</u> Mygene <u>http://mygene.info/</u> and <u>http://bioconductor.org/packages/release/bioc/html/mygene.html</u>

Gene-set analysis tools and methods

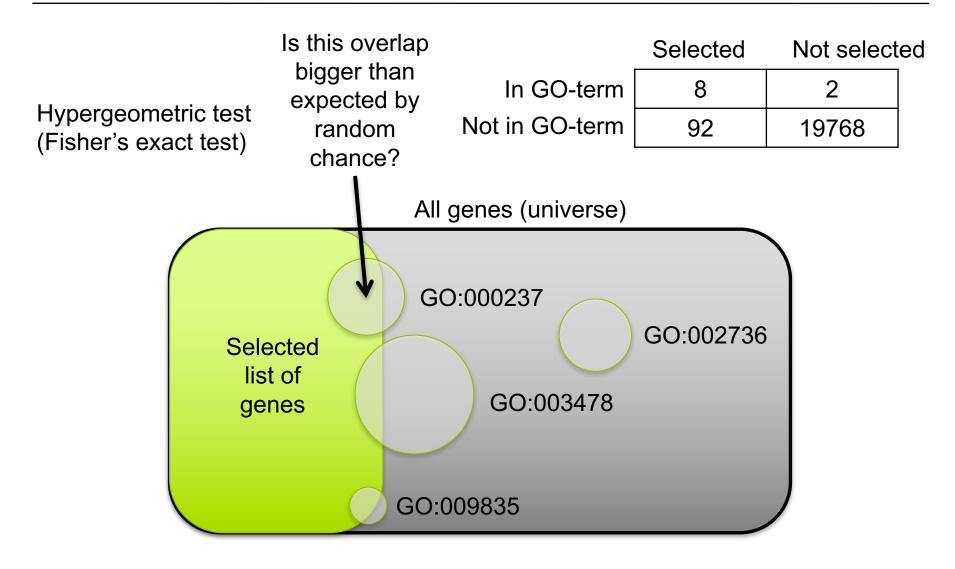
There are hundreds of tools to choose between...

OmicsTools (several platforms)

Bioconductor (R packages)

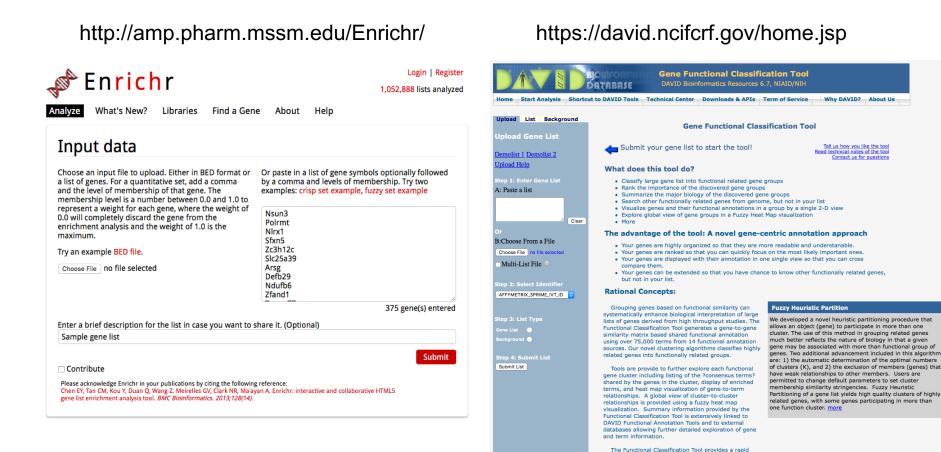
http://omictools.com/gene-set-analysis-category https://bioconductor.org/packages/release/BiocViews.html#___GeneSetEnrichment

Some examples:

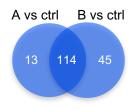

- Hypergeometric test / Fisher's exact test (a.k.a overrepresentation analysis)
- DAVID (browser)
- Enrichr (browser)
- GSEA (Java, R)
- piano (R)

Also exists e.g.:

- GSA for GWAS, miRNA, ...
- Network-based
- PlantGSEA
- GSA controlling for length bias in RNA-seq

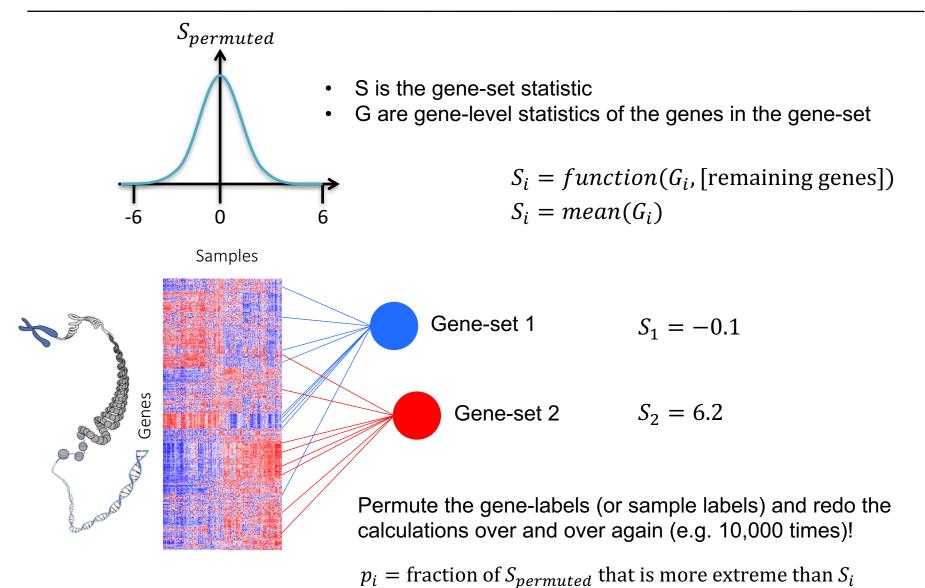

Overrepresentation analysis

Overrepresentation analysis



means to organize large lists of genes into functionally related groups to help unravel the biological content captured by high throughput technologies.more

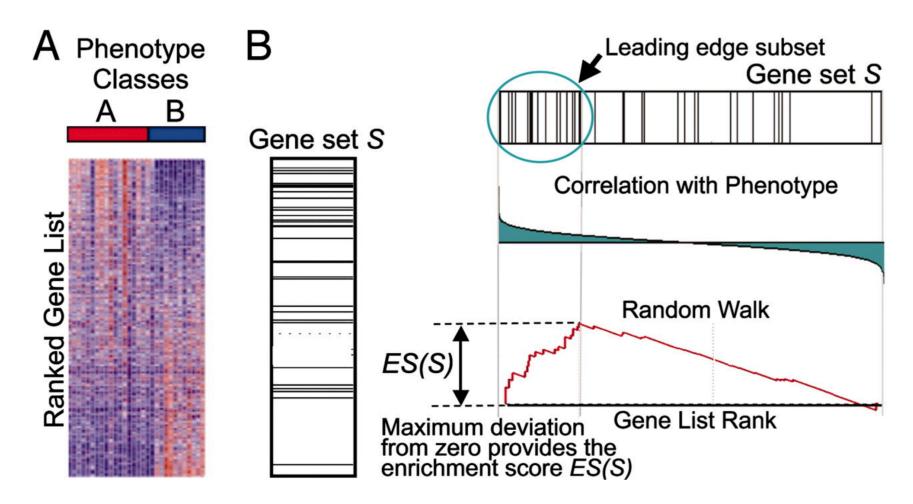
SelectedNot selectedIn GO-term82Not in GO-term9219768


- Requires a cutoff (arbitrary)
- Omits the actual values of the gene-level statistics
- Good for e.g. overlap of significant genes in two comparisons
- Computationally fast

In contrast, gene-set analysis is cutoff-free and uses all gene-level data and can detect small but coordinate changes that collectively contribute to some biological process.

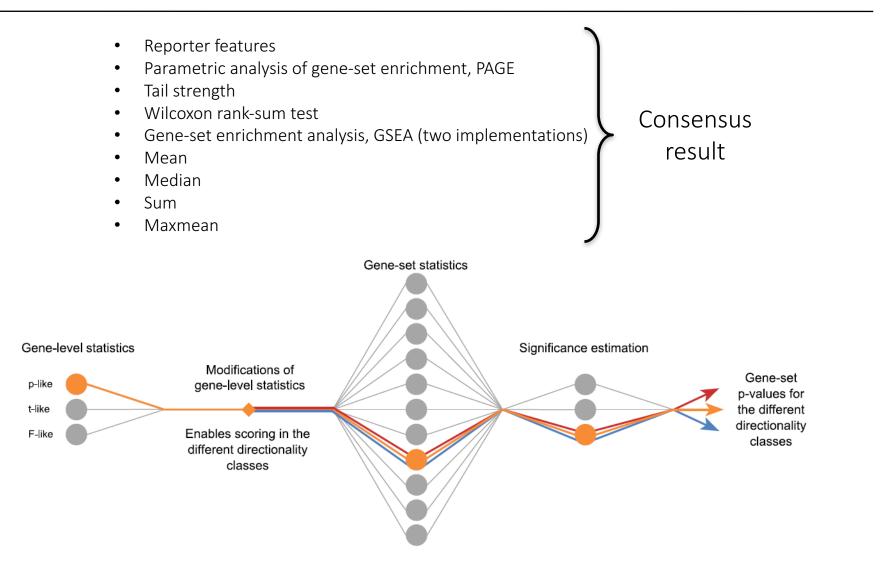
GSA: a simple example

Sci

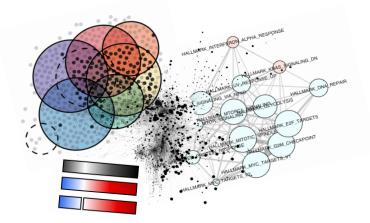


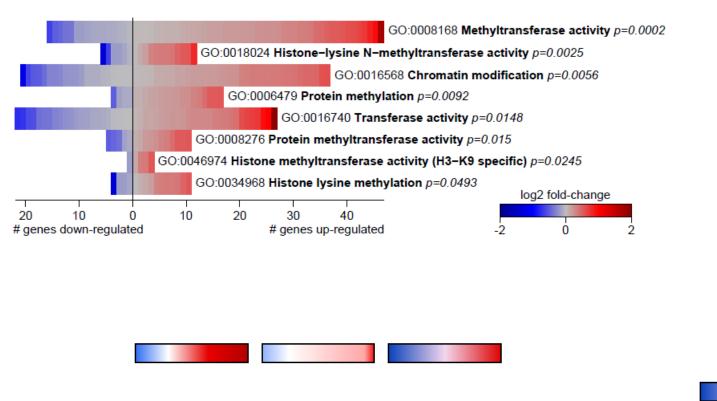
- p-values
- t-values, etc
- Fold-changes
- Ranks
- Correlations
- Signal to noise ratio
- ...

GSEA



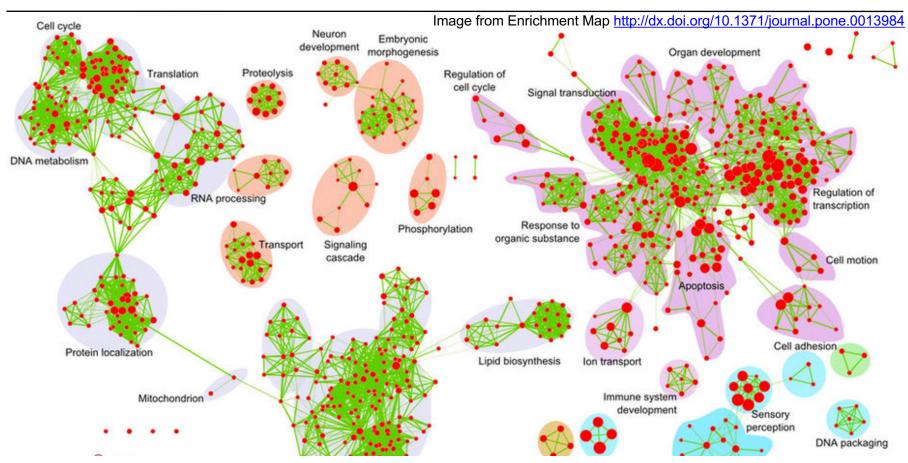
Mootha et al Nature Genetics, 2003; Subramanian PNAS 2005


Piano – a platform for GSA (in R)



Directionality, overlap, interaction, biases...

Directionality of gene-sets

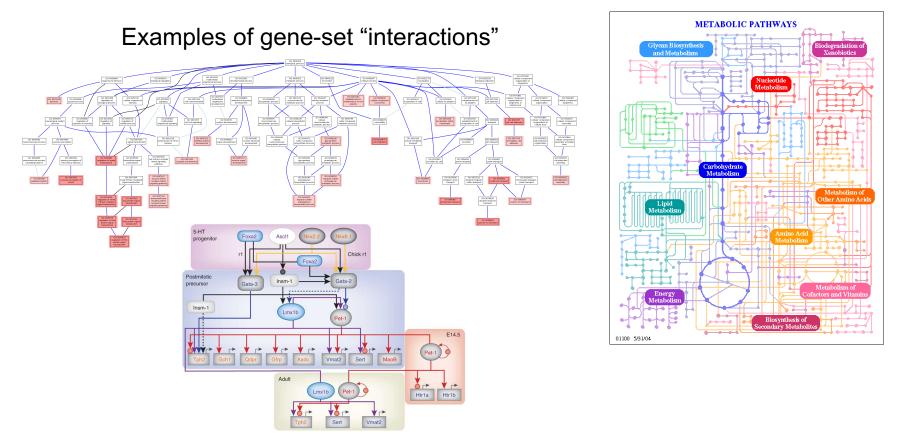


Gene set 1 Gene set 2 Gene set 3

Saturation = gene significance Red = up-regulated Blue = down-regulated

Disclaimer: The author of this presentation is the developer of piano

Gene-set overlap and interaction


 High number of very overlapping gene-sets (representing a similar biological theme) can bias interpretation and take attention from other biological themes that are represented by fewer gene-sets.

SciLif

Lab

Gene-set overlap and interaction

- High number of very overlapping gene-sets (representing a similar biological theme) can bias interpretation and take attention from other biological themes that are represented by fewer gene-sets.
- Can be valuable to take gene-set interaction into account (e.g. www.sysbio.se/kiwi)

- Bias in gene-set collections (popular domains, multifunctional genes, ...)
- Gene-set names can be misleading (revisit the genes!)
- Consider the gene-set size, i.e. number of genes (specific or general)
- Positive and negative association between genes and gene-sets makes genelevel fold-changes tricky to interpret correctly
- (Typically) binary association to gene-sets, does not take into account varying levels of influence from individual genes on the process that is represented by the gene-sets
- Remember to revisit the gene-level data! Are the genes significant? Are they correctly assigned to the specific gene-set?
- Remember to adjust for multiple testing

Gene-set analysis is a very efficient and useful tool to interpret your genome-wide data! Just remember to critically evaluate the results ③