




# Transcriptome and isoform reconstruction with short reads

Manfred Grabherr SciLifeLab RNAseq workshop November 2017

### **Transcriptome assembly**



Haas and Zody, Nature Biotechnology 28, 421–423 (2010)

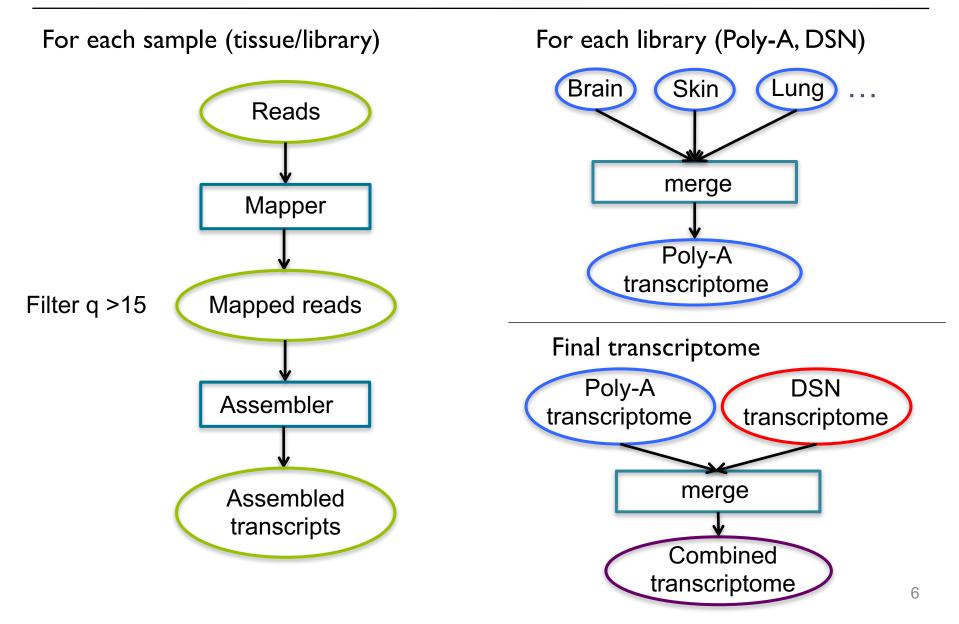
Sci

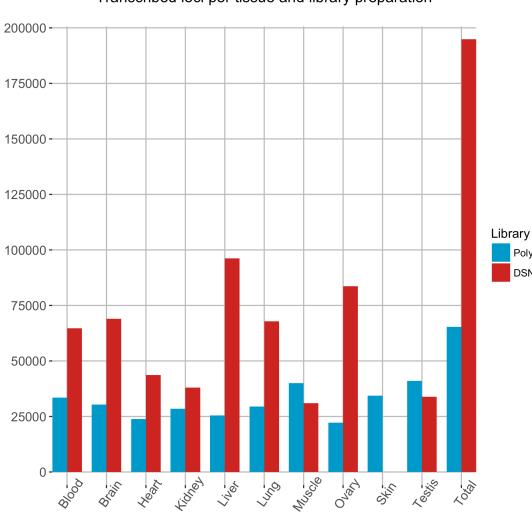


Case study: The transcriptome of the domestic dog



An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts. Hoeppner MP et al. PLoS One 2014 Mar 13;9(3):e91172


- Why dogs?
  - Shared environment with humans for > 10.000 years
  - Affected by cancer or heart disease
  - Breed-specific disease
- New genome release in 2011 (canFam3.1)
  - 85 Mb of additional sequences integrated
  - 99.8% of euchromatic portion of genome covered, high quality
- Annotation: not so good
  - Mostly homology-based
  - Almost no isoform information






- 10 tissues at great depth (30-100 million paired-end reads)
  - blood, brain, heart, kidney, liver, lung, ovary, skeletal muscle, skin, and testis
- 2 sets of libraries
  - strand-specific dUTP with poly-A selection: captures protein coding genes and other transcripts transcribed by polymerase II
  - duplex-specific nuclease (DSN): targets all RNAs, reduces the levels of the highly abundant ribosomal transcripts through normalization

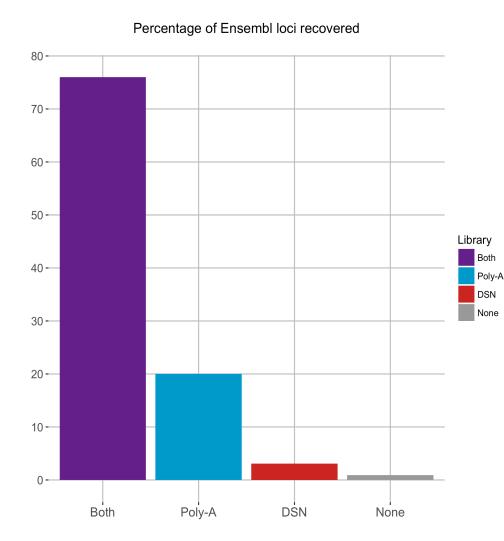






Transcribed loci per tissue and library preparation

- DSN recovers more transcripts
- Poly-A: highest number in ٠ testis, then muscle


Sci

Poly-A: heart and muscle share 88% of loci

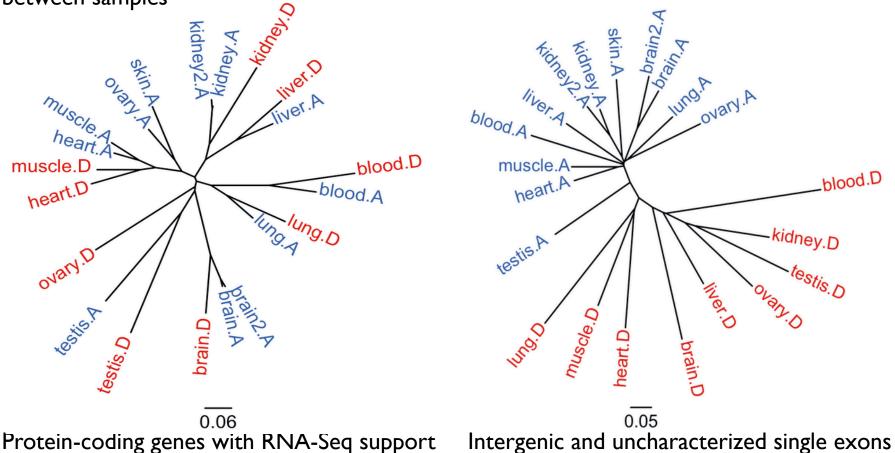
Poly-A

DSN

- Mean transcript length:
  - Poly-A: 3169 bp
  - DSN: 1485 bp



 Ensembl build 64: 19,856 annotated loci


Sci

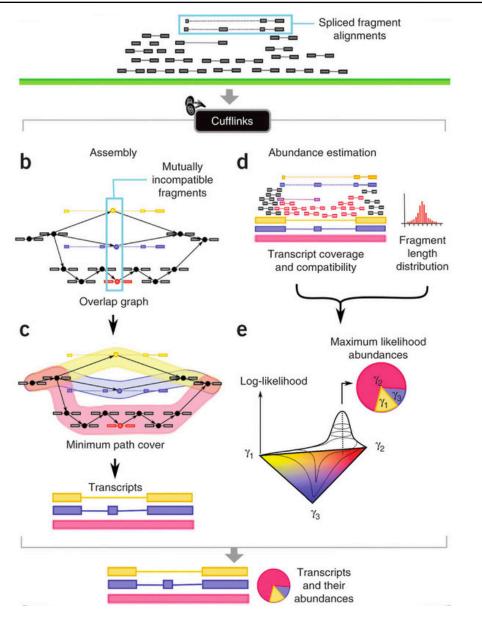
- Combined Poly-A + DSN: 174,336 loci
- Majority located in introns of known genes and transcribed in the same sense
  - potential byproducts of incomplete splicing
- Many located outside of known features, seem independently transcribed



#### Distance trees of expression profile

Neighbor-joining trees based on the correlation between expression values (FPKM>1.0) between samples



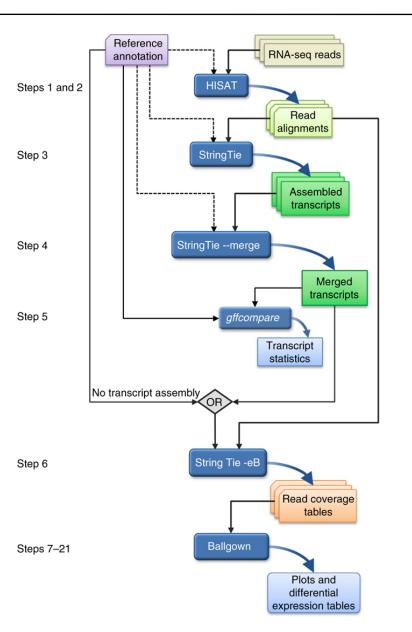

An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts. 9 Hoeppner MP et al. PLoS One 2014 Mar 13;9(3):e91172



# Cufflinks

From the "Tuxedo" protocol

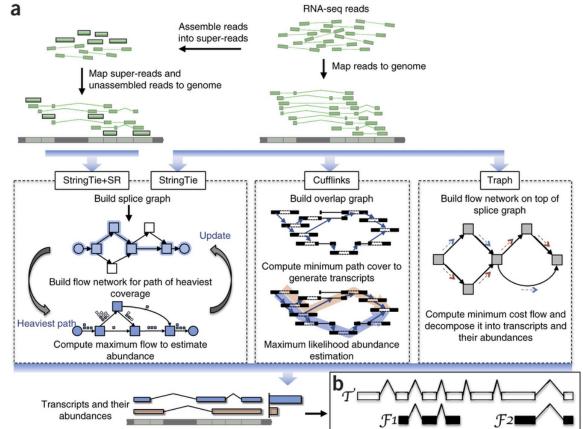
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Trapnell C. et al. Nature Biotechnology 28, 511–515 (2010)




10

# SciLifeLab

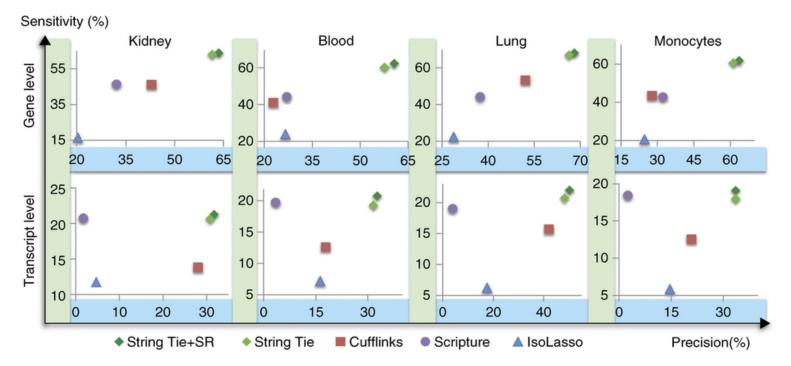
# The "new Tuxedo" protocol


Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Pertea M. et al. Nature protocol 11, 1650–1667 (2016)



# StringTie

From the "new Tuxedo" protocol


StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Pertea M.. et al. Nature Biotechnology 33, 290–295 (2015)



SciL

# StringTie

<u>Fig.3</u>: Accuracy of transcript assemblers at assembling known genes, measured on real data sets from four different tissues (RefSeq, UCSC or Ensembl human gene databases)



<u>Sensitivity</u> (genes): % of genes for which a program got at least one isoform correct <u>Sensitivity</u> (transcripts): % of known transcripts that were correctly assembled <u>Precision</u>: % of all predicted genes/transcripts that match an annotated gene/transcript



# Take-home message

- Need a very good reference (genome most of the time)
- Can use existing annotation (GTF/GFF file)
- Can detect novel transcripts





- Most used programs (latest release date):
  - Trinity (March 2016)
  - SOAPdenovo-Trans (July 2013)
  - Trans-ABySS (August 2016)
  - Velvet+Oases (March 2015)
- Originally SOAPdenovo, ABySS and Velvet for de novo genome assembly
- "SOAPdenovo-Trans incorporates the error-removal model from Trinity and the robust heuristic graph traversal method from Oases."
- All based on de Bruijn graph





*De novo* transcriptome assembly databases for the butterfly orchid *Phalaenopsis equestris* 

Data in Brief

*De novo* transcriptome assembly of mangosteen (*Garcinia mangostana* L.) fruit

*De novo* Transcriptome Analysis Reveals Distinct Defense Mechanisms by Young and Mature Leaves of *Hevea brasiliensis* (Para Rubber Tree)

*De novo* transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zonespecific responses to salt exposure

#### *De Novo* Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

*De novo* transcriptome assembly of two contrasting pumpkin cultivars

Identification of novel and useful EST-SSR markers from *de novo* transcriptome sequence of wheat (*Triticum aestivum* L.)

*De Novo* Transcriptome Assembly and Characterization for the Widespread and Stress-Tolerant Conifer *Platycladus orientalis* 

#### *De novo* Assembly of Leaf Transcriptome in the Medicinal Plant *Andrographis paniculata*

Transcriptome sequencing and de novo characterization of Korean endemic land snail, *Koreanohadra kurodana* for functional transcripts and SSR markers

#### *De Novo* Assembly of the Transcriptome of *Turritopsis*, a Jellyfish that Repeatedly Rejuvenates

Transcriptome of the Caribbean stony coral *Porites astreoides* from three developmental stages

# *De novo* transcriptome assembly of the marine gastropod *Reishia clavigera* for supporting toxic mechanism studies

The *De Novo* Transcriptome and Its Functional Annotation in the Seed Beetle *Callosobruchus maculatus* 

*De Novo* Transcriptome Analysis of the Common New Zealand Stick Insect *Clitarchus hookeri* (Phasmatodea) Reveals Genes Involved in Olfaction, Digestion and Sexual Reproduction

Characterization and analysis of a *de novo* transcriptome from the pygmy grasshopper *Tetrix japonica* 

#### Optimizing Hybrid *de Novo* Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (*Macrobrachium rosenbergii*): The Identification of Genes and Markers Associated with Reproduction

*De Novo* Transcriptome Analysis of Two Seahorse Species (*Hippocampus erectus* and *H. mohnikei*) and the Development of Molecular Markers for Population Genetics

*De Novo* assembly and annotation of the freshwater crayfish 16 *Astacus astacus* transcriptome



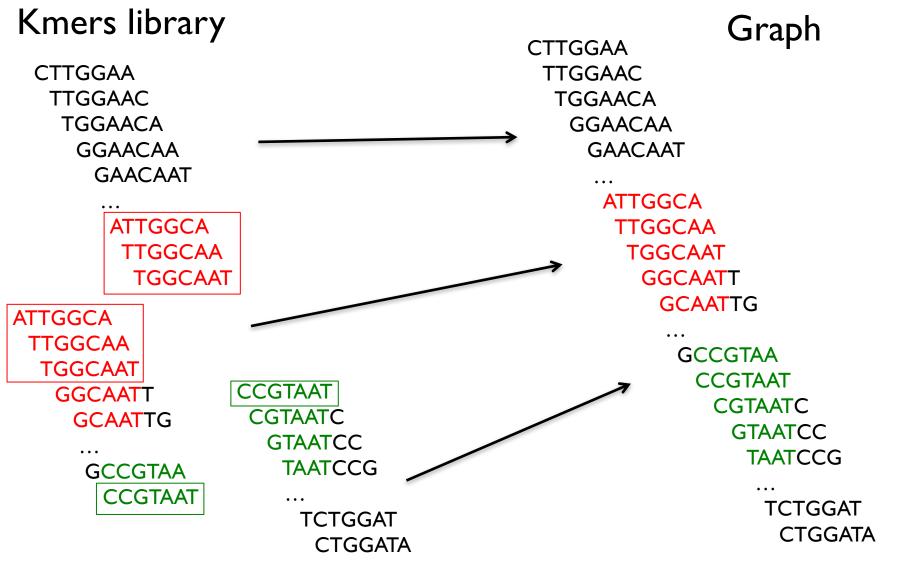
The de Bruijn graph

#### CTTGGAACAATATGAATTGGCAAT ATTGGCAATTGACTTTTGCCGTAAT CCGTAATCCGGCATATCTGGATA

Kmers (k = 7)

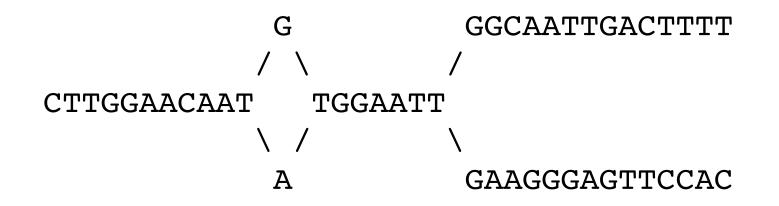
CTTGGAA TTGGAAC TGGAACA GGAACAA GAACAAT

> ATTGGCA TTGGCAA TGGCAAT


ATTGGCA TTGGCAA TGGCAAT GGCAATT GCAATTG

> GCCGTAA CCGTAAT

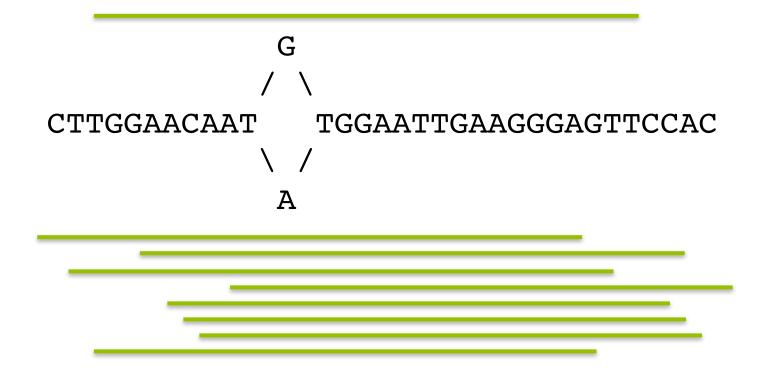
CCGTAAT CGTAATC GTAATCC TAATCCG


> TCTGGAT CTGGATA








Graphs can have nodes and edges



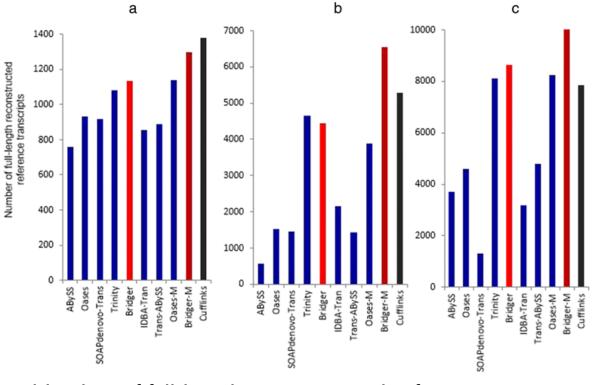


#### Differences between programs:

- Kmer length
- Removing edges






#### METHOD OPEN ACCESS

#### Bridger: a new framework for *de novo* transcriptome assembly using RNA-seq data

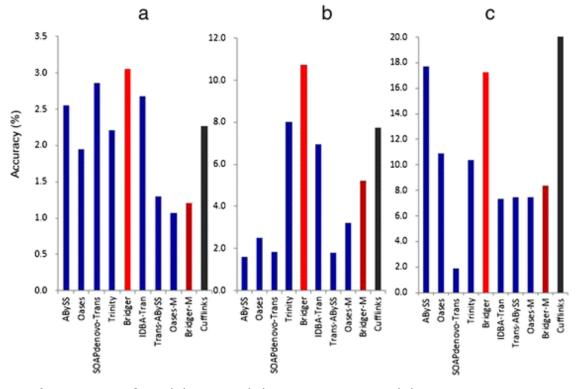
Zheng Chang<sup>†</sup>, Guojun Li<sup>†</sup> 🖾 , Juntao Liu, Yu Zhang, Cody Ashby, Deli Liu, Carole L Cramer and Xiuzhen Huang 🖾 <sup>†</sup>Contributed equally

 Genome Biology
 2015
 16:30
 DOI: 10.1186/s13059-015-0596-2
 © Chang et al.; licensee BioMed Central. 2015

 Received:
 22 May 2014
 Accepted:
 23 January 2015
 Published:
 11 February 2015



Number of full-length reconstructed reference transcripts for (a) dog, (b) human, and (c) mouse



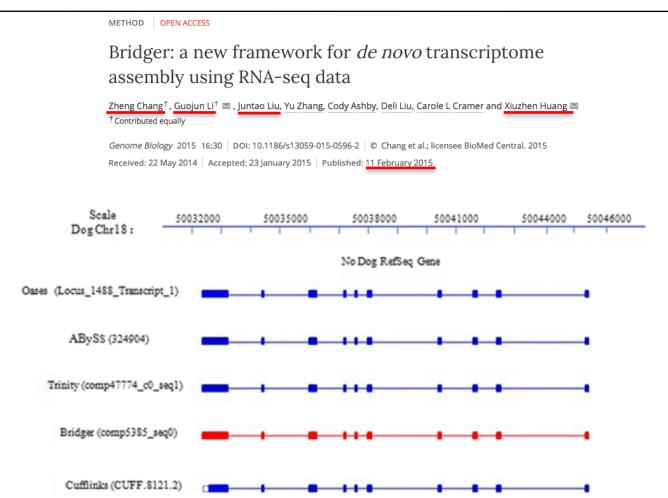

METHOD OPEN ACCESS

#### Bridger: a new framework for *de novo* transcriptome assembly using RNA-seq data

Zheng Chang<sup>†</sup>, Guojun Li<sup>†</sup> 🖾 , Juntao Liu, Yu Zhang, Cody Ashby, Deli Liu, Carole L Cramer and Xiuzhen Huang 🖾 <sup>†</sup>Contributed equally

Genome Biology201516:30DOI: 10.1186/s13059-015-0596-2© Chang et al.; licensee BioMed Central. 2015Received:22 May 2014Accepted:23 January 2015Published:11 February 2015




Accuracy for (a) dog, (b) human, and (c) mouse [the most reference transcripts by the least candidate transcripts]



METHOD OPEN ACCESS Bridger: a new framework for *de novo* transcriptome assembly using RNA-seq data Zheng Chang<sup>†</sup>, Guojun Li<sup>†</sup> 🖾 , Juntao Liu, Yu Zhang, Cody Ashby, Deli Liu, Carole L Cramer and Xiuzhen Huang 🖾 <sup>†</sup> Contributed equally Genome Biology 2015 16:30 DOI: 10.1186/s13059-015-0596-2 © Chang et al.; licensee BioMed Central. 2015 Received: 22 May 2014 Accepted: 23 January 2015 Published: 11 February 2015 Scale 50032000 50035000 50038000 50041000 50044000 50046000 Dog Chrl8: No Dog RefSeq Gene Oases (Locus\_1488\_Transcript\_1) ABySS (324904) Trinity (comp47774\_c0\_seq1) Bridger (comp5385\_seq0) Cufflinks (CUFF. \$121.2)

A novel gene containing 10 exons was assembled by all assemblers. Interestingly, all *de novo* assemblers captured longer UTR than the reference-based assembler Cufflinks

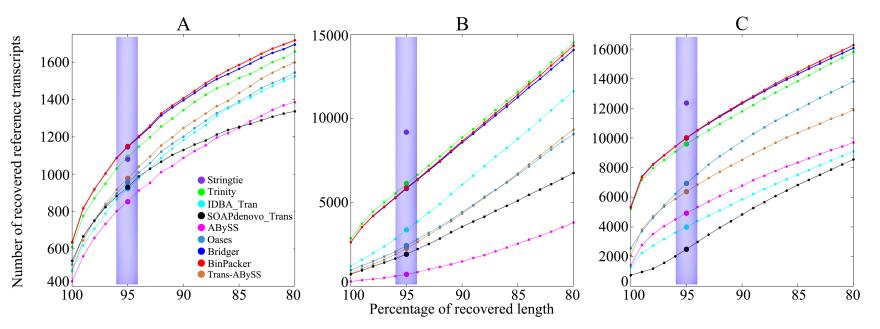




A novel gene containing 10 exons was assembled by all assemblers. Interestingly, all *de novo* assemblers captured longer UTR than the reference-based assembler Cufflinks

SciLifeLab

25


🔓 OPEN ACCESS 🏾 🎓 PEER-REVIEWED

RESEARCH ARTICLE

# BinPacker: Packing-Based *De Novo* Transcriptome Assembly from RNA-seq Data

Juntao Liu 💿, Guojun Li 💿 🖾, Zheng Chang, Ting Yu, Bingqiang Liu, Rick McMullen, Pengyin Chen, Xiuzhen Huang 🖾

Published: February 19, 2016 • http://dx.doi.org/10.1371/journal.pcbi.1004772



Comparison of recovered reference sensitivity and its distribution against recovered sequence length rates (sequence identity) ranging from 80% to 100% on (A) dog, (B) human and (C) mouse datasets.

SciLifeLab

The next-next generation of transcriptome assemblers:

- Overlap based
- Take advantage of longer reads
- Accommodate 3<sup>rd</sup> gen sequencing (e.g. MinION)
- Metatranscriptomes

#### Under development: Ananas

...from the people who brought you Trinity, coming to a server near you soon!





# Take-home message

- No reference needed
- Many programs available
- Lots of potential transcripts. Filter!



#### Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome

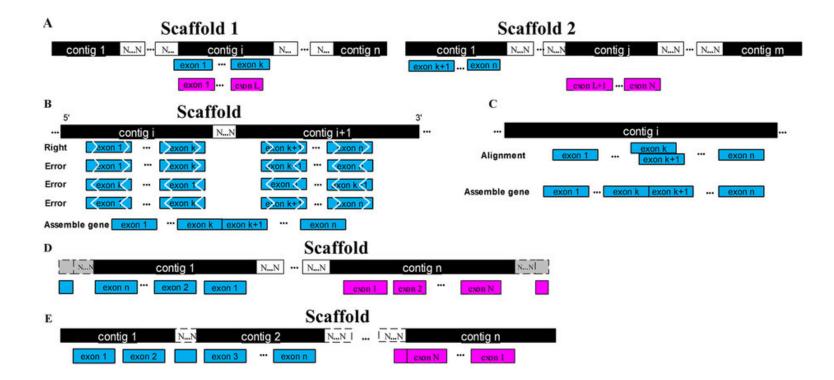
Meili Chen, Yibo Hu, Jingxing Liu, Qi Wu, Chenglin Zhang, Jun Yu, Jingfa Xiao <sup>™</sup>, Fuwen Wei <sup>™</sup> & Jiayan Wu <sup>™</sup>

Scientific Reports 5, Article number: 18019 (2015) doi:10.1038/srep18019 Received: 05 May 2015 Accepted: 10 November 2015 Published online: 11 December 2015



Sci

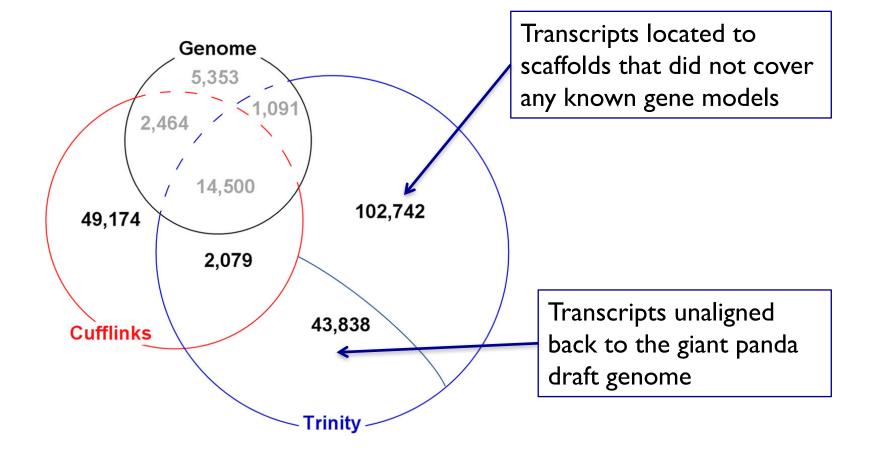



- Background
  - I<sup>st</sup> de novo assembled genome based solely on short reads (Li et al., Nature 463, 2010)
  - 23,408 genes annotated on the basis of a homology search with human and dog genes and *ab initio* methods
- RNA-seq: 12 tissues
  - liver, stomach, small intestine, colon, pallium and testis from 1 male adult
  - pituitary gland, skeletal muscle, tongue, ovary and skin from I female adult



- Reference-based:
  - Transcripts reconstruction: Cufflinks (alignment: TopHat)
- De novo:
  - Transcripts reconstruction: Trinity
- 24 assemblies (12 tissues \* 2 methods)
  - Merge the 12 transcriptomes for each method
  - Merge the 2 method transcriptomes




#### Improvement of genome assembly



(A) Scaffolding improvement; (B) Scaffolding inconsistencies; (C) Nest assembly errors; (D) Boundary extensions; (E) Gap closure



#### Transcriptome reconstruction



49,174 + 2,079 + 43,838 + 102,742 = 197,833 potential novel transcripts!



#### Validation of candidate novel protein-coding genes

- ORF detection (Augustus)
  - 197,833 novel transcripts => 28,522 potential novel protein-coding genes
- Homology search (blast) 3 categories
  - 551 (1.93%) homology-based genes that were similar to known proteins in the nr database and known cDNA sequences in the nt database;
  - 6,290 (22.03%) unknown genes that were similar to EST sequences in dbEST but had no protein or cDNA homology information;
  - I2,575 (44.09%) hypothetical genes that had a complete ORF but no known homologs.
  - 9,106 ORFs were filtered out (no start or stop codon, too short CDS...)



#### Validation of candidate novel protein-coding genes

- Protein domain search on 19,416 ORFs (InterProScan)
  - 409 out of 551 homology-based genes
  - 5,112 out of 6,290 unknown genes
  - 7,981 out of 12,575 hypothetical genes
- Proteomic analysis in 5 tissues
  - 12,043 peptide hits
  - I,691 novel protein-coding genes characterized with at least 1 peptide



# Take-home message

- Useful if the reference is incomplete
- Can help improving the reference
- Can help annotating the reference
- Need to filter the results!



# Thank you for listening!



#### Questions?

