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Defining functional DNA elements in the human genome
Kellis M et al. PNAS 2014;111:6131-6138

RNA	reads	are	not	enough	to	identify	
functional	RNAs



All	the	steps	will	affect	the	results
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RNA	enrichment	protocoll
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Sequencing	machine
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Differential	expression	analysis	program



Try	to	be	as	consistent	as	possible
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Use	a	pipeline!



Gene	and	Isoform	detection



Promises	and	pitfalls
Long	reads

• Low	throughput						 (-)
• Complete	transcripts (++)
• Not	quantitative (-)
• Only	highly	expressed	genes (-)
• Expensive		 (-)
• Low	background	noise (+)
• Easy	downstream	analysis	 (++)

short	reads
• High	throughput	 (++)
• Quantitative (++)
• Fractions	of	transcripts		 (-)
• Full	dynamic	range	 (+-)
• Unlimited	dynamic	range							 (+)
• Cheap (+)
• Low	background	noise (+)
• Strand	specificity (+)
• Re-sequencing (+)



RNA-seq analysis	workflow
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Do	a	lot	of	QC
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More	variation	when	using	top	hat	2	with	
default	settings	than	when	using	STAR	or	

Stampy with	default	setting
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Principal	component	1	separates	
samples	from	flowers	and	leaves	
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Expression	levels	are	similar	between	
RT-qPCR	and	RNA-seq data

www.nature.com/scientificreports/
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groups consist of genes for which both methods agree on the differential expression status (i.e. differentially 
expressed or not differentially expressed). These genes are further referred to as concordant genes. The third and 
fourth group consist of genes for which both methods disagree on the differential expression status (i.e. differ-
entially expressed by only one method or differentially expressed by both methods but with opposite direction). 
These genes are collectively referred to as non-concordant genes. The fraction of non-concordant genes ranged 
from 15.1% (Tophat-HTSeq) to 19.4% (Salmon) and was consistently lower for the alignment-based algorithms 
compared to the pseudoaligners (Fig. 4B). While the non-concordant fraction appears large, it mainly consists of 
genes for which the difference in log fold change between methods (∆FC) is relatively low. For instance, over 66% 
of all genes in the non-concordant fraction have a ∆FC < 1 and 93% have a ∆FC < 2, irrespective of the workflow 
(Supplemental Fig. 7). We therefore defined a fifth group of genes with ∆FC > 2. These genes represent between 
7.1% (Tophat-HTSeq) and 8% (Tophat-Cufflinks) of the entire non-concordant fraction (Fig. 4B) and, together 
with the genes that have differential expression going in opposite directions, we considered as truly deviating 
between RNA-seq and qPCR. When evaluating the expression levels of the various fractions of non-concordant 
genes, it’s clear that the non-concordant genes with ∆FC > 2 and non-concordant opposite direction genes are 
primarily expressed at low levels (i.e. first expression quartile, Fig. 4B and Supplemental Fig. 8). In contrast, 
non-concordant genes with ∆FC < 2 are equally distributed across expression quartiles (Fig. 4B). An overview of 
all non-concordant genes is available in Supplemental Table 2.

To evaluate the extent to which the non-concordant genes are workflow-specific, we assessed the overlap 
of non-concordant genes between workflows (Fig. 5A and Supplemental Fig. 9). While a significant number of 
genes are shared between all workflows, several genes were identified that are specific to one workflow or a group 
of workflow (i.e. alignment based and pseudoaligners). Whereas the former points to systematic discrepancies 
between quantification technologies (i.e. qPCR and RNA-seq), the latter points to differences between individ-
ual workflows or groups of workflows. The number of workflow-specific, non-concordant genes with ∆FC > 2 
ranged from 5 (Kallisto) to 55 (Tophat-HTSeq). These are genes where the workflow fails to reproduce the dif-
ferential expression (observed by qPCR and all other workflows) or genes for which the workflow observes dif-
ferential expression that is not confirmed by qPCR or any of the other workflows. Examples of workflow-specific 
non-concordant genes with ∆FC > 2 are shown in Fig. 5B. LRRC74B and HNRNPA1L2 are differentially 

Figure 1. Gene expression correlation between RT-qPCR and RNA-seq data. The Pearson correlation 
coefficients and linear regression line are indicated. Results are based on RNA-seq data from dataset 1.



Most	problems	are	consistent	so	they	disappear	when	
you	do	diff-exp analysiswww.nature.com/scientificreports/
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expressed according to Salmon and Tophat-HTSeq respectively, but are non-differential according to the other 
workflows and RT-qPCR. Conversely, AUNIP and MYBPC2 are non-differential according to Tophat-Cufflinks 
and Kallisto respectively, but differential according to RT-qPCR and the other workflows. When grouping work-
flows, we identified 70 non-concordant genes with ∆FC > 2 specific for pseudoalignment algorithms and 62 
non-concordant genes with ∆FC > 2 specific for mapping algorithms. Similar results were obtained in the second 
dataset (Supplemental Figs 10–12).

To verify whether these genes were consistent between independent RNA-seq datasets, we compared results 
between dataset 1 and 2. Workflow-specific genes were found to be significantly overlapping between both data-
sets (Fig. 5C). This was especially the case for Tophat-Cufflinks and Tophat-HTSeq specific genes. Also genes 
specific for pseudoalignment algorithms and mapping algorithms were significantly overlapping between dataset 
1 and 2 (Fig. 5B). These results suggest that each workflow (or group of workflows) consistently fails to accurately 
quantify a small subset of genes, at least in the samples considered for this study.

Features of non-concordant genes. In order to evaluate why accurate quantification of specific genes 
failed, we computed various features including GC-content, gene length, number of exons, and number of 
paralogs. These features were determined for concordant and non-concordant genes and compared between 
both groups (Fig. 6). Non-concordant genes specific for pseudoalignment algorithms and mapping algo-
rithms were significantly smaller (Wilcoxon: p < 0.001, Kolmogorov-Smirnov: p < 0.001) and had fewer exons 
(Wilcoxon: p < 0.003, Kolmogorov-Smirnov: p < 0.001) compared to concordant genes. No significant dif-
ference in GC-content or number of paralogs was observed. Besides evaluating gene characteristics, we also 
assessed the number of poor quality reads (below Q20) and multi-mapping reads. The number of poor quality 
and multi-mapping reads was higher for non-concordant compared to concordant genes. This was observed for 
both pseudoalignment (Chi-square: p < 2.2e-16; relative risk poor quality = 1.12, multi-mapping = 1.071) and 
mapping workflows (Chi-square: p < 2.2e-16; relative risk poor quality = 1.073, multi-mapping = 1.075).

Figure 3. High fold change correlation between RT-qPCR and RNA-seq data for each workflow. The 
correlation of the fold changes was calculated by the Pearson correlation coefficient. Results are based on RNA-
seq data from dataset 1.



Gene-set	analysis	(GSA)	
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We	will	focus	on	transcriptomics and	differential	expression	analysis
However,	GSA	can	in	principle	be	used	on	all	types	of	genome-wide	data.



Analysis	regarding	Type	II	Diabetes
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Expression	of	genes	on	pathway



Exercises
• Mapping

– STAR	
– HISAT2

• Tutorial	for	reference	guided	assembly
– Cufflinks
– Stringtie

• Tutorial	for	de	novo	assembly
– Trinity

• Visualise mapped	reads	and	assembled	
transcripts	on	reference
– IGV

• RNA	quality	controll
– Tutorial	for	RNA	seq Quality	Control

• Differential	expression	analysis
– DEseq2
– Calisto	and	Sleuth
– multi	variate analysis	in	SIMCA

• small	RNA	analysis
– miRNA analysis

• Introductory
– Introduction	to	the	RNA	seq data	provided
– Short	introduction	to	R
– Short	introduction	to	IGV

• Beta labs
– Single	cell	RNA	PCA	and	clustering
– Gene	set	analysis

• UPPMAX
– sbatch script	example



Need	help??

• We	are	here	for	you.	Apply	for	help.


