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Good	news	is	that	they	are	all	working	
very	well!!
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DNA	is	the	same	in	all	cells	but	which	
RNAs	that	is	present		is	different	in	all	

cells



There	is	a	wide	variety	of	different	
functional	RNAs



Different	kind	of	RNAs	have	different	
expression	values

Landscape	of	transcription	in	human	
cells, S	Djebali et	al.	Nature	2012



One	gene	many	transcripts
RNA-seq: alternative splicing



Depending	on	the	different	steps	you	
will	get	different	results
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Depending	on	the	different	steps	and	
programs	you	will	get	different	results
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Spliced	alignment

Second, unmapped reads are split into shorter segments and aligned 
independently. The genomic regions surrounding the mapped read 
segments are then searched for possible spliced connections. Exon-
first aligners are very efficient when only a small portion of the reads 
require the more computationally intensive second step. Alternatively, 
seed-extend methods8,50,51 such as ‘genomic short-read nucleotide 
alignment program’ (GSNAP)50 and ‘computing accurate spliced 
alignments’ (QPALMA)51 break reads into short seeds, which are 
placed onto the genome to localize the alignment (Fig. 1b). Candidate 
regions are then examined with more sensitive methods, such as the 
Smith-Waterman algorithm51 or iterative extension and merging of 
initial seeds8,50 to determine the exact spliced alignment for the read 
(Fig. 1b). Many of these alignment methods47–51 also support paired-
end read mapping, which increases alignment specificity.

Exon-first approaches are faster and require fewer computational 
resources compared to seed-extend methods. For example, a seed-
extend method (GSNAP) takes ~8  longer (~340 CPU hours) than 
an exon-first method (TopHat) resulting in ~1.5 more spliced 
reads (Supplementary Table 1). However, the biological meaning 
of these additional splice junctions has not been demonstrated.

Exon-first approaches can miss spliced alignments for reads that 
also map to the genome contiguously, as can occur for genes that 
have retrotransposed pseudogenes (Fig. 1c). In contrast, seed-
extend methods evaluate spliced and unspliced alignments in the 
same step, which reduces this bias toward unspliced alignments, 
yielding the best placement of each read. Seed-extend methods per-
form better than exon-first approaches when mapping reads from 
polymorphic species52.

Transcriptome reconstruction
Defining a precise map of all transcripts and isoforms that are 
expressed in a particular sample requires the assembly of these reads 
or read alignments into transcription units. Collectively, we refer to 
this process as transcriptome reconstruction. Transcriptome recon-
struction is a difficult computational task for three main reasons. 

one seed in a read will perfectly match the reference. Each seed is used 
to narrow candidate regions where more sensitive methods (such as 
Smith-Waterman) can be applied to extend seeds to full alignments. 
In contrast, the second approach includes Burrows-Wheeler trans-
form methods39–41 such as Burrows-Wheeler alignment (BWA)40 
and Bowtie39, which compact the genome into a data structure that 
is very efficient when searching for perfect matches42,43. When allow-
ing mismatches, the performance of Burrows-Wheeler transform 
methods decreases exponentially with the number of mismatches as 
they iteratively perform perfect searches39–41.

Unspliced read aligners are ideal for mapping reads against a ref-
erence cDNA databases for quantification purposes5,20,26,44,45. If 
the exact reference transcriptome is available, Burrows-Wheeler 
methods are faster than seed-based methods (in our example, 
~15  faster requiring ~110 central processing unit (CPU) hours) 
and have small differences in alignment specificity (~10% lower) 
Supplementary Table 1). In contrast, when only the reference 
transcriptome of a distant species is available, ‘seed methods’ can 
result in a large increase in sensitivity. For example, using the rat 
transcriptome as a reference for mouse reads resulted in 40% more 
reads aligned at a cost of ~7  more compute time, yielding a compa-
rable alignment success rate as when aligning to the actual reference 
mouse transcriptome (Supplementary Table 1 and Supplementary  
Figs. 1 and 2). Similarly, an increase in sensitivity using seed meth-
ods has been observed when aligning reads to polymorphic regions 
in a species for quantification of allele-specific gene expression46.

Unspliced read aligners are limited to identifying known exons and 
junctions, and do not allow for the identification of splicing events 
involving new exons. Alternatively, reads can be aligned to the entire 
genome, including intron-spanning reads that require large gaps for 
proper placement. Several methods exist, collectively referred to as 
‘spliced aligners’, that fall into two main categories: ‘exon first’ and ‘seed 
and extend’. Exon-first47–49 methods such as MapSplice49, SpliceMap47 
and TopHat48 use a two-step process. First, they map reads con-
tinuously to the genome using the unspliced read aligners (Fig. 1a). 
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Figure 1 | Strategies for gapped alignments of 
RNA-seq reads to the genome. (a,b) An illustration 
of reads obtained from a two-exon transcript; 
black and gray indicate exonic origin of reads. 
Exon-first methods (a) map full, unspliced reads 
(exonic reads), and remaining reads are divided 
into smaller pieces and mapped to the genome. 
An extension process extends mapped pieces to 
find candidate splice sites to support a spliced 
alignment. Seed-and-extend methods (b) store a 
map of all small words (k-mers) of similar size in 
the genome in an efficient lookup data structure; 
each read is divided into k-mers, which are mapped 
to the genome via the lookup structure. Mapped 
k-mers are extended into larger alignments, 
which may include gaps flanked by splice sites. 
(c) A potential disadvantage of exon-first 
approaches illustrated for a gene and its associated 
retrotransposed pseudogene. Mismatches 
compared to the gene sequence are indicated in 
red. Exonic reads will map to both the gene and 
its pseudogene, preferring gene placement owing 
to lack of mutations, but a spliced read could 
be incorrectly assigned to the pseudogene as it 
appears to be exonic, preventing higher-scoring 
spliced alignments from being pursued.
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How	important	is	mapping	accuracy?
Depends	what	you	want	to	do:

Identify	novel	genetic	variants	or	RNA	editing

Allele-specific	expression

Genome	annotation

Gene	and	transcript	discovery

Differential	expression
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Current	RNA-seq	aligners
TopHat2 Kim	et	al.	Genome Biology 2013

HISAT2 Kim	et	al.	Nature	Methods	2015

STAR Dobin et	al.	Bioinformatics	 2013

GSNAP Wu	and	NacuBioinformatics	 2010

OLego Wu	et	al. Nucleic	Acids	Research	2013

HPG	aligner Medina	et	al.	DNA	Research 2016

MapSplice2 http://www.netlab.uky.edu/p/bioinfo/MapSplice2



Compute	requirements
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(94.8%) among all the aligners. OLego yielded slightly higher pre-
cision (95.5%), but at the expense of lower sensitivity (94.2%).

Comparison on real data
We compared the aligners using 108,749,331 101-bp RNA-seq reads 
collected from fetal lung fibroblasts (GEO accession GSM981249; 
Supplementary Note). Because we do not know the true align-
ments for these reads, we evaluated alignment quality in two ways: 
(i) the cumulative number of alignments detected, up to an edit 
distance of 3, and (ii) the number of spliced alignments found that 
correspond to known human splice sites, based on the Ensembl 
GRCh37 gene annotation. At all distances, HISATx2, STARx2 
and HISAT aligned the greatest number of reads, in a tight range  
from 95.9 million to 96 million (Supplementary Fig. 3). We then 
examined the cumulative number of spliced alignments that cor-
respond to annotated human splice sites, also separated according 
to edit distance (Supplementary Fig. 4). At every distance and for 
the overall total, HISATx2, STARx2 and HISAT found the highest  
numbers of alignments, ranging from 34.6 million to 35.2 million. 
STAR and OLego found the lowest numbers of spliced alignments, 
at just 26.9 million and 26.2 million, respectively.

HISATx1 and HISAT took 23 and 27 min, respectively, and 
STAR took 25 min to process the 109 million reads. In contrast, 
TopHat2 took 1,170 min, OLego took 990 min and GSNAP took 
292 min. In terms of memory usage, the suffix-array methods 
STAR and GSNAP used 28 and 20.2 GB of RAM. The Burrows-
Wheeler transform–based programs (HISATx1, HISAT, HISATx2, 
OLego and TopHat2) required memory ranging from 3.7 to 4.3 GB  
of RAM (Table 2).

We provide alignment results for additional sets of simulated 
reads and for an additional real data set from Chen et al.17 con-
taining 217 million paired-end reads (Supplementary Figs. 5–7  
and Supplementary Tables 4–6). In all cases, the relative per-
formances of the alignment programs remained the same as 
described above. In Supplementary Table 7, we provide details 
of the input parameters and version numbers for all programs 
used in these evaluations.

DISCUSSION
Although HISAT is the first system to employ a hierarchical 
indexing strategy for spliced alignment, the strategy itself could 
be adopted by other methods if their data structures can be suit-
ably redesigned. All the programs that were included in our 
study—GSNAP, STAR, OLego and TopHat2—could in principle 
use hierarchical indexing and thereby improve their alignment 

speed and quality. HISAT gains additional sensitivity from align-
ment algorithms specifically designed to handle different types 
of intron-spanning reads. The combination of these algorithms 
with hierarchical indexing enables dramatically faster alignment 
while matching or exceeding the accuracy of the best previous 
spliced aligners.

METHODS
Methods and any associated references are available in the online 
version of the paper.
Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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HISATx1 22.7 4.3
HISATx2 47.7 4.3
HISAT 26.7 4.3
STAR 25 28
STARx2 50.5 28
GSNAP 291.9 20.2
OLego 989.5 3.7
TopHat2 1,170 4.3
Run times and memory usage for HISAT and other spliced aligners to align 109 million 
101-bp RNA-seq reads from a lung fibroblast data set. We used three CPU cores to run the 
programs on a Mac Pro with a 3.7 GHz Quad-Core Intel Xeon E5 processor and 64 GB of RAM.
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Innovations	in	RNA-seq	alignment	
software

• Read	pair	alignment
• Consider	base	call	quality	scores
• Sophisticated	indexing	to	decrease	CPU	and	memory	usage	
• Map	to	genetic	variants
• Resolve	multi-mappers	using	regional	read	coverage
• Consider	junction	annotation
• Two-step	approach	(junction	discovery	&	final	alignment)



Recommendations	when	using	
mapping	programs

• Use	STAR,	HISAT2
• STAR	and	HISAT2	are	the	fastest
• HISAT2	uses	the	least	memory
• Always	check	the	results!



“Pseudoalignments”	in	calisto





Gene	expression	estimates

• Expression	estimates	on	gene	level
• Expression	estimates	on	transcript	level



Gene	level	analysis
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Benchmarking of RNA-sequencing 
analysis workflows using whole-
transcriptome RT-qPCR expression 
data
Celine Everaert1,2,3, Manuel Luypaert4, Jesper L. V. Maag  5, Quek Xiu Cheng5, Marcel E. 
Dinger  5, Jan Hellemans4 & Pieter Mestdagh1,2,3

RNA-sequencing has become the gold standard for whole-transcriptome gene expression 
quantification. Multiple algorithms have been developed to derive gene counts from sequencing 
reads. While a number of benchmarking studies have been conducted, the question remains how 
individual methods perform at accurately quantifying gene expression levels from RNA-sequencing 
reads. We performed an independent benchmarking study using RNA-sequencing data from the well 
established MAQCA and MAQCB reference samples. RNA-sequencing reads were processed using five 
workflows (Tophat-HTSeq, Tophat-Cufflinks, STAR-HTSeq, Kallisto and Salmon) and resulting gene 
expression measurements were compared to expression data generated by wet-lab validated qPCR 
assays for all protein coding genes. All methods showed high gene expression correlations with qPCR 
data. When comparing gene expression fold changes between MAQCA and MAQCB samples, about 
85% of the genes showed consistent results between RNA-sequencing and qPCR data. Of note, each 
method revealed a small but specific gene set with inconsistent expression measurements. A significant 
proportion of these method-specific inconsistent genes were reproducibly identified in independent 
datasets. These genes were typically smaller, had fewer exons, and were lower expressed compared to 
genes with consistent expression measurements. We propose that careful validation is warranted when 
evaluating RNA-seq based expression profiles for this specific gene set.

Due to the drop in cost of massively parallel sequencing, RNA-sequencing (RNA-seq) has become a viable alter-
native to gene expression microarrays1. Nowadays, RNA-seq is generally considered the gold standard for whole 
transcriptome gene expression quantification, not only in research but also for clinical applications. Compared 
to microarrays, RNA-seq has several major advantages. First, no prior knowledge about the content of the tran-
scriptome is required, providing an unbiased view on the ensemble of transcripts in a sample and the possibility 
of evaluating allelic expression. Second, RNA-seq enables a much more detailed analysis of alternative splicing 
events. While certain microarray platforms can be used to study alternative splicing2, this is typically limited to 
known isoforms and occurs at much lower resolution. Finally, RNA-seq gene expression measurements tend to 
cover a much broader dynamic range and can be more sensitive compared to microarrays3, 4. Nevertheless, the 
field of RNA-seq still faces many challenges, especially in terms of data processing and analyses. In contrast to the 
microarray field, where data processing converged over the years into a well-defined set of broadly accepted work-
flows, the number of RNA-seq data processing workflows is still increasing, with none accepted as the standard 
so far. RNA-seq data processing workflows typically come in two different flavours. First, there are methods that 
align reads directly to a reference genome, followed by quantification of mapped reads (e.g. Tophat-Cufflinks5, 
Tophat-HTSeq6, 7 and STAR-HTSeq7, 8). Secondly, there are the so-called pseudoalignment methods (e.g. Salmon9 
and Kallisto10) that break up reads into k-mers before assigning them to transcripts. This results in a substan-
tial gain in speed compared to the alignment based workflows. The workflows also differ in how they estimate 
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Expression	levels	are	similar	between	
RT-qPCR	and	RNA-seq data

www.nature.com/scientificreports/
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groups consist of genes for which both methods agree on the differential expression status (i.e. differentially 
expressed or not differentially expressed). These genes are further referred to as concordant genes. The third and 
fourth group consist of genes for which both methods disagree on the differential expression status (i.e. differ-
entially expressed by only one method or differentially expressed by both methods but with opposite direction). 
These genes are collectively referred to as non-concordant genes. The fraction of non-concordant genes ranged 
from 15.1% (Tophat-HTSeq) to 19.4% (Salmon) and was consistently lower for the alignment-based algorithms 
compared to the pseudoaligners (Fig. 4B). While the non-concordant fraction appears large, it mainly consists of 
genes for which the difference in log fold change between methods (∆FC) is relatively low. For instance, over 66% 
of all genes in the non-concordant fraction have a ∆FC < 1 and 93% have a ∆FC < 2, irrespective of the workflow 
(Supplemental Fig. 7). We therefore defined a fifth group of genes with ∆FC > 2. These genes represent between 
7.1% (Tophat-HTSeq) and 8% (Tophat-Cufflinks) of the entire non-concordant fraction (Fig. 4B) and, together 
with the genes that have differential expression going in opposite directions, we considered as truly deviating 
between RNA-seq and qPCR. When evaluating the expression levels of the various fractions of non-concordant 
genes, it’s clear that the non-concordant genes with ∆FC > 2 and non-concordant opposite direction genes are 
primarily expressed at low levels (i.e. first expression quartile, Fig. 4B and Supplemental Fig. 8). In contrast, 
non-concordant genes with ∆FC < 2 are equally distributed across expression quartiles (Fig. 4B). An overview of 
all non-concordant genes is available in Supplemental Table 2.

To evaluate the extent to which the non-concordant genes are workflow-specific, we assessed the overlap 
of non-concordant genes between workflows (Fig. 5A and Supplemental Fig. 9). While a significant number of 
genes are shared between all workflows, several genes were identified that are specific to one workflow or a group 
of workflow (i.e. alignment based and pseudoaligners). Whereas the former points to systematic discrepancies 
between quantification technologies (i.e. qPCR and RNA-seq), the latter points to differences between individ-
ual workflows or groups of workflows. The number of workflow-specific, non-concordant genes with ∆FC > 2 
ranged from 5 (Kallisto) to 55 (Tophat-HTSeq). These are genes where the workflow fails to reproduce the dif-
ferential expression (observed by qPCR and all other workflows) or genes for which the workflow observes dif-
ferential expression that is not confirmed by qPCR or any of the other workflows. Examples of workflow-specific 
non-concordant genes with ∆FC > 2 are shown in Fig. 5B. LRRC74B and HNRNPA1L2 are differentially 

Figure 1. Gene expression correlation between RT-qPCR and RNA-seq data. The Pearson correlation 
coefficients and linear regression line are indicated. Results are based on RNA-seq data from dataset 1.



Lowly	expressed	genes	are	more	
problematic	to	identify	using	RNA	seq

www.nature.com/scientificreports/
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Figure 2. The overlap of the rank outlier genes between samples (MAQCA and MAQCB) and workflows 
is significant. (A) The number of genes with an (absolute) rank shift of more than 5000 are indicated. Genes 
marked as down have a higher expression rank in RT-qPCR, genes marked as up have a higher expression 
rank in RNA-seq. (B) The overlap of genes with an absolute rank shift of more than 5000 between MAQCA 
and MAQCB is significant for each workflow (Fisher exact test) (C) The overlap of the genes with an absolute 
rank shift of more than 5000 between the different workflows is significant (Super exact test). (D) Genes with 
an absolute rank shift of more than 5000 have an overall lower expression. The Kolmogorov-Smirnov p-value 
for the intersection of rank outlier genes between methods is shown. Results are based on RNA-seq data from 
dataset 1.

www.nature.com/scientificreports/
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Figure 2. The overlap of the rank outlier genes between samples (MAQCA and MAQCB) and workflows 
is significant. (A) The number of genes with an (absolute) rank shift of more than 5000 are indicated. Genes 
marked as down have a higher expression rank in RT-qPCR, genes marked as up have a higher expression 
rank in RNA-seq. (B) The overlap of genes with an absolute rank shift of more than 5000 between MAQCA 
and MAQCB is significant for each workflow (Fisher exact test) (C) The overlap of the genes with an absolute 
rank shift of more than 5000 between the different workflows is significant (Super exact test). (D) Genes with 
an absolute rank shift of more than 5000 have an overall lower expression. The Kolmogorov-Smirnov p-value 
for the intersection of rank outlier genes between methods is shown. Results are based on RNA-seq data from 
dataset 1.



Most	problems	are	consistent	so	they	disappear	when	
you	do	diff-exp analysiswww.nature.com/scientificreports/
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expressed according to Salmon and Tophat-HTSeq respectively, but are non-differential according to the other 
workflows and RT-qPCR. Conversely, AUNIP and MYBPC2 are non-differential according to Tophat-Cufflinks 
and Kallisto respectively, but differential according to RT-qPCR and the other workflows. When grouping work-
flows, we identified 70 non-concordant genes with ∆FC > 2 specific for pseudoalignment algorithms and 62 
non-concordant genes with ∆FC > 2 specific for mapping algorithms. Similar results were obtained in the second 
dataset (Supplemental Figs 10–12).

To verify whether these genes were consistent between independent RNA-seq datasets, we compared results 
between dataset 1 and 2. Workflow-specific genes were found to be significantly overlapping between both data-
sets (Fig. 5C). This was especially the case for Tophat-Cufflinks and Tophat-HTSeq specific genes. Also genes 
specific for pseudoalignment algorithms and mapping algorithms were significantly overlapping between dataset 
1 and 2 (Fig. 5B). These results suggest that each workflow (or group of workflows) consistently fails to accurately 
quantify a small subset of genes, at least in the samples considered for this study.

Features of non-concordant genes. In order to evaluate why accurate quantification of specific genes 
failed, we computed various features including GC-content, gene length, number of exons, and number of 
paralogs. These features were determined for concordant and non-concordant genes and compared between 
both groups (Fig. 6). Non-concordant genes specific for pseudoalignment algorithms and mapping algo-
rithms were significantly smaller (Wilcoxon: p < 0.001, Kolmogorov-Smirnov: p < 0.001) and had fewer exons 
(Wilcoxon: p < 0.003, Kolmogorov-Smirnov: p < 0.001) compared to concordant genes. No significant dif-
ference in GC-content or number of paralogs was observed. Besides evaluating gene characteristics, we also 
assessed the number of poor quality reads (below Q20) and multi-mapping reads. The number of poor quality 
and multi-mapping reads was higher for non-concordant compared to concordant genes. This was observed for 
both pseudoalignment (Chi-square: p < 2.2e-16; relative risk poor quality = 1.12, multi-mapping = 1.071) and 
mapping workflows (Chi-square: p < 2.2e-16; relative risk poor quality = 1.073, multi-mapping = 1.075).

Figure 3. High fold change correlation between RT-qPCR and RNA-seq data for each workflow. The 
correlation of the fold changes was calculated by the Pearson correlation coefficient. Results are based on RNA-
seq data from dataset 1.
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Figure 4. Quantification of non-concordant genes reveals that the numbers are low and similar between 
workflows. (A) A schematic overview of different classes of genes, used for further analysis, by means of a 
dummy example. The concordant genes between RT-qPCR and RNA-seq are either differentially expressed or 
non-differential for both datasets. The non-concordant genes are split into three groups, those with a ∆FC < 2, 
∆FC > 2 and the ones with a FC in the opposite direction. (B) The percentages of genes in each of the above-
described classes is shown for each workflow. For the non-concordant genes, distribution across expression 
quartiles (Q1 = lowest 25%) is shown. Results are based on RNA-seq data from dataset 1.
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Discussion
Based on a unique dataset of RT-qPCR expression measurements for 18 080 protein-coding genes, we evalu-
ated the performance of five RNA-seq processing workflows, including both alignment based and pseudoalign-
ment algorithms. Of note, RNA-seq workflows not included in this study may perform differently than those 
selected here. We decided to run each workflow using the default analysis parameters as we reasoned that this 
is likely what most users do. Nevertheless, adjusting or fine-tuning these parameters might further improve 
performance of individual algorithms. Algorithm performance may also depend on the RNA-seq library prep 
method. Here, we used stranded polyA+ libraries sequenced in paired-end mode. Performance may differ 

Figure 5. Each workflow (or workflow group) has specific non-concordant genes, which are reproducible 
identified in independent datasets. (A) Venn diagrams showing the overlap between the non-concordant genes 
with ∆FC < 2, non-concordant genes with ∆FC > 2 and non-concordant genes with opposite direction. (B) 
Examples of workflow-specific non-concordant genes. (C) Overlap of the non concordant genes with a ∆FC > 2 
between two independent datasets. The p-values (Fisher Exact test) represent the significance of the overlap.
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when evaluating unstranded libraries, total RNA libraries or single end reads. Moreover, the annotation of 
the reference transcriptome could also influence quantification results. RT-qPCR assays may for instance also 
detect transcripts not included in the reference annotation and hence not taken into account by the RNA-seq 
processing workflows. This could result in an underestimation of the TPM values with respect to Cq-values 
obtained by qPCR. However, the expression correlation plots indicate that more genes show the opposite pat-
tern and have a higher expression when quantified by RNA-seq as compared to RT-qPCR (Fig. 1). This may, 
in part, be explained by differences in amplification efficiency. Another possible explanation is that for this 
benchmark a transcriptome, filtered for transcripts detected by the qPCR assays, was used. Reads mapping 
to shared exons from transcripts not detected by the qPCR assay are therefore expected to increasing the 
quantification values for the RNA-seq workflows. Using a pre-filtered transcriptome indeed results in higher 
gene-level TPM-values for a small subset of genes compared to a non-filtered transcriptome, where gene-level 
TPM-values were generated by summing transcript-level TPM-values of transcripts detected by the qPCR 
assays (Supplemental Fig. 13). Fold changes between samples were largely unaffected. Taken together, the use 
of an extensive or non-filtered annotation will result in more reliable quantification. For the HTSeq workflow, 
post-quantification filtering is not possible, resulting in a lower correlation with RT-qPCR data. Of note, this 
phenomenon is due to the transcript specificity of the RT-qPCR assay designs and not to the quantification 
workflow itself. Another caveat of using a filtered transcriptome is that increased TPM-values of some genes 
will result in decreased TPM-values of others given the relative nature of this measure. However, this should 
not affect any of the analysis where differences between samples are compared.

For the comparison between RNA-seq and RT-qPCR, we focussed our analysis on differential gene expres-
sion correlations as these are conceptually more relevant and more closely resemble the main application of 
RNA-seq. We deliberately avoided introducing differential gene expression algorithms like DESeq15, edgeR16 or 

Figure 6. Non-concordant genes show differential characteristics compared to concordant genes. Cumulative 
fractions of %GC (A), maximum transcript length (B), maximum exon length (C) and number of exons (D) 
for concordant genes compared to non-concordant gens specific for either pseudoalignment or mapping 
algorithms. Kolmogorov-Smirnov p-values are indicated.
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Abstract

Background: Alternatively spliced transcript isoforms are commonly observed in higher eukaryotes. The expression
levels of these isoforms are key for understanding normal functions in healthy tissues and the progression of disease
states. However, accurate quantification of expression at the transcript level is limited with current RNA-seq technologies
because of, for example, limited read length and the cost of deep sequencing.

Results: A large number of tools have been developed to tackle this problem, and we performed a comprehensive
evaluation of these tools using both experimental and simulated RNA-seq datasets. We found that recently developed
alignment-free tools are both fast and accurate. The accuracy of all methods was mainly influenced by the complexity
of gene structures and caution must be taken when interpreting quantification results for short transcripts. Using TP53
gene simulation, we discovered that both sequencing depth and the relative abundance of different isoforms affect
quantification accuracy

Conclusions: Our comprehensive evaluation helps data analysts to make informed choice when selecting
computational tools for isoform quantification.

Keywords: RNA-seq, Quantification, Isoform, Data analysis, RSEM, Salmon, Salfish, Kallisto

Background
Recent large genome-scale studies concluded that almost
all human multi-exon genes could be spliced into mul-
tiple transcript isoforms [1]. There are 58,037 annotated
human genes and 198,093 isoforms in Gencode v25 [2].
On average, there are 3.4 annotated transcripts per hu-
man gene and if only protein-coding genes are consid-
ered, the ratio increases to 7:1. However, the number of
annotated transcripts does not fully represent the com-
plexity of all alternative splicing events in cells. The
available databases only annotate transcripts that are
commonly observed. Novel transcripts are often discov-
ered by RNA-seq, even in well-annotated organisms like
human and mouse.
Isoform switching events are observed in various cellular

processes, including tissue differentiation and transition
from healthy to disease states [3–8]. Isoforms from the

same gene can be involved in distinct processes or even
play opposite roles. The p53 tumour suppressor gene also
known as Tumour Protein P53 (TP53) is well studied and
has a central role in the regulation of DNA-damaged cells.
TP53 is frequently mutated in most human cancer types
[9, 10]. However, not all TP53 isoforms have the same role
in tumour suppression. For instance, the roles of Δ133p53
and full-length p53β isoforms are opposite to each other.
The Δ133p53 isoform inhibits apoptosis of tumour cells in-
duced by the full-length p53β isoform [11, 12]. In such
cases, it is essential to obtain accurate quantification of ex-
pression at the transcript level to understand the relative
contribution of each isoform to a physiological state.
Our previous study [13] showed that a transcript-based

approach led to a significant improvement in the accuracy
of gene expression quantification over traditional union-
exon based methods such as HTseq [14] and featureCounts
[15]. Thus, transcript level quantification is recommended
for all RNA-seq data analysis. Moreover, isoform quantifica-
tion not only detects isoform-switching events that are
masked by gene level analysis, but also improves gene level
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quantification accuracy by aggregating the transcript level
quantification results [16, 17].
In recent years, RNA-seq has emerged as a powerful

transcriptome profiling technology that allows in-depth
analysis of alternative splicing [18]. In a typical RNA-seq
assay, extracted RNAs are reverse transcribed and frag-
mented into cDNA libraries, which are sequenced by high
throughput sequencers. Transcript isoforms coming from
the same gene are highly similar in sequence and share a
large percentage of overlapping regions. It is, therefore, a
challenging task to identify the true origin of the short se-
quencing reads, given that reads from overlapping regions
can come from any of the transcript isoforms.
A number of packages have been developed to quantify

expression at the transcript level [19]. RSEM [20] imple-
ments iterations of EM (Expectation-Maximization) algo-
rithms to assign reads to the isoforms from which they
originate. eXpress [21] is a more recent tool that utilizes
an online EM algorithm to improve the convergence
speed of standard EM methods. TIGAR2 [22] utilizes
Bayesian inference and aims to provide better accuracy for
longer reads. Cufflinks [3] is a popular tool for novel tran-
script discovery and quantification. It attempts to explain
the observed reads with a minimum number of isoforms.
The strategy is similar to one iteration of the EM algo-
rithm used in RSEM [20].
Most Recently, ultra-fast alignment-free methods, such

as Sailfish [23], Salmon [24] and Kallisto [25], have been
developed by exploiting the idea that precise alignments
are not required to assign reads to their origins. Kallisto
introduced a de bruijn graph to achieve efficient “pseudo-
alignment” by checking the compatibility between short
reads with transcripts. Sailfish was initially implemented
using a k-mer approach, but was later improved to incorp-
orate the same mapper from Salmon for “quasi-mapping”.
Salmon implemented a two-phase inference procedure in-
cluding both online and offline iterations of EM. Salmon
is also a flexible tool that has two modes of quantification.
It can either process sequence reads directly using its own
mapper, i.e. RapMap [26], or it can take transcriptome-
mapped BAM files as inputs. To distinguish these two
running modes, the two modes are evaluated separately,
with the former termed as “Salmon” and the latter termed
as “Salmon_aln” in the following discussion.
In this paper, we performed a comprehensive evalu-

ation of these tools using both experimental and simu-
lated datasets, and investigated the impact of gene
structural features on the accuracy of isoform quantifica-
tion. Our evaluation focused on isoform quantification
methods that aim to accurately quantify known tran-
scripts. Thus, those methods that focus on novel tran-
script discovery, such as Stringtie [27], SLIDE [28] and
iReckon [29], were excluded from this evaluation. After
careful literature review, a total of seven tools were

selected: Cufflinks, RSEM, TIGAR2, eXpress, Sailfish,
Kallisto and Salmon. We used RSEM simulated datasets
to measure the accuracy of methods, technical replicates
of experimental data to test the robustness, and simu-
lated transcripts from the TP53 gene to illustrate the
challenges of isoform quantification.

Methods
Datasets
The RNA-seq dataset for two technical replicates from
Universal Human Reference RNA (UHRR-C1 and UHRR–
C2) and two technical replicates from Human Brain Refer-
ence RNA (HBRR-C4 and HBRR-C6) were downloaded
from Illumina’s BaseSpace. The four samples were pre-
pared by a strand-specific protocol and deeply sequenced
on a HiSeq 2500 platform, with about 80 million paired-
end reads per sample. The RSEM package was used to
simulate 50 million reads from the HBRR-C4 sample in
the experimental dataset. The fraction of reads coming
from “noise” (theta0) was set to 0.007 in the simulation.

Workflow of quantification
The transcript expression levels in both simulated
and experimental datasets were quantified by the
workflow depicted in Fig. 1. For each algorithm, de-
tailed command line parameters are provided in the
Additional file 1: Supplementary Methods. The initial
input files for the workflow were sequence reads in
FASTQ/FASTA format and the final output files were the
summarized counts or TPM (Transcripts Per Million) ta-
bles. Some methods, including RSEM, TIGAR2, and eX-
press, require transcriptome-mapping BAM files as input,

Fig. 1 Workflow for transcript isoform quantification. Sequencing
reads were either mapped by STAR aligner or directly fed into
alignment-free methods, Salmon, Sailfish or Kallisto. The transcriptome
BAM files were quantified by Salmon_aln, eXpress, RSEM or TIGAR2. The
genome BAM files were quantified by Cuffquant and then Cuffnorm
from the Cufflinks package. The results are summarized into counts and
TPM tables for comparison
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Comparisons of isoform quantification accuracy across
methods
We first filtered out lowly expressed transcripts and log2
transformed the counts and TPM tables as described in
the Methods Section. Then, R2 and MARDS were calcu-
lated as accuracy measurements for expressed tran-
scripts using estimated read counts (Fig. 2a and b) and
TPM values (Additional file 1: Figure S1A and B). R2 is a
good metric for global agreements between two sets. It
is robust against outliers after log2-transformation, but
does not give a good estimate if there is strong linear
bias. MARDS, on the other hand, is a local measurement

for relative errors. It can detect global biases, but is not ro-
bust against outliers. By combining the two metrics, we
obtained a comprehensive view of the accuracy measure-
ment of the eight methods from the seven chosen tools.
We also calculated Spearman correlation coefficient and
RMSD (Root Mean Squared Distance) described by Teng
et al. [35] (Additional file 1: Figure S2A and B), however,
we did not observe any additional benefits.
Figure 2a and b show strong agreements between R2

and MARDS. In general, the higher the R2, the smaller the
corresponding MARDS. Overall, all methods had a good
performance by achieving R2 over 0.91 and MARDS less
than 0.3. Cufflinks and eXpress, showed worse scores in
both categories, and performed worse than the other
methods in this simulation. The accuracy difference was
small for the other six methods, achieving R2 over 0.95
and MARDS less than 0.2. The same conclusions can be
drawn using either counts or TPM values.

The impact of gene complexity on the accuracy of
isoform quantification
Next, we investigated what features impact the accuracy
of transcript quantification. One such feature is the
structural complexity of a gene. If a gene has a complex
structure, with a large number of highly similar tran-
script isoforms, it can be difficult for algorithms to cor-
rectly assign reads to their true origins. To quantify this
effect, we divided the transcripts evenly into four separ-
ate groups according to the number of isoforms of their

Table 1 Run time metrics of each method on 50 million paired-
end reads of length 76 bp in an high performance computing
cluster

Memory (Gb) Run time (min) Algorithm Multi-thread

Cufflinks 3.5 117 ML Yes

RSEM 5.6 154 ML Yes

eXpress 0.55 30 ML No

TIGAR2 28.3 1045 VB Yes

kallisto 3.8 7 ML Yes

Salmon 6.6 6 VB/ML Yes

Salmon_aln 3 7 VB/ML Yes

Sailfish 6.3 5 VB/ML Yes

For methods that support multi-threading, eight threads were used. For alignment-
free methods (Kallisto, Salmon and Sailfish), a mapping step was included. The best
performer in each category is underlined and the worst performer is in bold
ML Maximum Likelihood, VB Variational Bayes

Fig. 2 Comparisons of the overall performance among different methods and the impact of the number of transcripts on the accuracy of isoform
quantification. a Pearson correlation coefficient. b mean absolute relative differences and c-d) The above metrics were broken into separate groups
according to the number of annotated transcript isoforms for each gene. The number of transcripts in each group is shown in figure legends. The
accuracy metrics were calculated by comparing the estimated counts with the “ground truths” in simulated dataset
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Results	are	very	similar	between	
methods

Fig. 6 Significant difference in estimated read counts for transcript RPS28P7–001 resulting from STAR aligner. A total of 154 reads for RPS28P7–
001 were simulated. a The estimated read counts from all eight methods are shown, and they are severely underestimated by the methods using
STAR aligner. b The read coverage profiles (coloured in red) in RPS28P7–001 and RPS28–001. The peak paired-end read counts (both ends counted)
are shown in brackets. Only a small fraction of reads were mapped back to the RPS28P7 region while the majority of reads were incorrectly mapped to
the RPS28 gene

Fig. 5 Pairwise correlation of estimated TPM values for all transcripts between methods for the HBRR-C4 sample. The distribution of transcripts’
TPMs from each method was plotted on the diagonal panels. Pairwise density plots and R2 values are shown in the lower and upper triangular
panels, respectively. R2 values over 0.9 are in bold. Methods are grouped using hierarchical clustering
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