Normalization and Batch-Effects in scRNAseq Data

Nikolay Oskolkov
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Why to remove batch-effects and normalize?

Both batch-effects removal and normalization refer to correction for unwanted technical variation
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Normalization: correct for systematic variation in sequensing experiment
1) between samples (e.g. sequencing depth bias)
2) between features (e.g. gene length or GC content)



Difference in sequencing depth:
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How to detect?
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How to correct?

Normalization: normalize by library size (other choices: TMM, DESeq, Deconvolution)

Batch-effects: ComBat, SVA etc.
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Lots of zero-counts is main challenge in scRNAseq

scRNAseq expression counts have typically ~80% of zero-counts

This is due to: 1) low amounts of RNA per cell, 2) RNA capture efficiency
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We want to correct for sequencing depth and cell-to-cell difference in RNA capture efficiency
3 common normalization methods used for bulk RNAseq: 1) TMM, 2) DESeq, 3) RPKM
Main assumption of all 3 methods: most of the genes are not differentially expressed

TMM and DESeq rely on ratios of counts, therefore diverge when lots of zero-counts



Brief Overview of Bulk RNAseq
Normalization Methods:

RPKM, DESeq, TMM



RPKMs (FPKMs)

RPKM normalization is an extension of so-called library size normalization

Library size normalization: scaling such that library size is equal between all libraries

e
RPKM = II?,L

where:

C = number of reads that overlap a given gene
N = library size

L = gene length

Disadvantage: forced equalizing library sizes might eliminate true biological variation
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Disadvantage: DESeq is based on ratio construction



TMM: select one library as a reference and normalize all other
libraries against this one, calculate M-values, trim extremes

Trimmed mean of M-values(TMM)
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Disadvantage: TMM is also

based on ratio construction

A, =—;-Iogz(ng/Nk-ngr/Nk*) for Y, #0

where
Yg = counts for gene g in library k
N, = total number of reads in library k



TMM and DESeq Minimize Technical Variation
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sCRNAseq - Specific Normalization Methods:

Deconvolution (Pooling-Across-Cells-Method)



Lun et al. Genome Biology (2016) 1775
01 10.1186/513059-016-0947-7

Deconvolution Normalization Method

Genome Biology

METHOD Open Access

Pooling across cells to normalize

@ Crossiiark

single-cell RNA sequencing data with many

Zero counts

Aaron T.L. Lun'", Karsten Bach? and John C. Marioni'%3"

Abstract

Normalization of single-cell RNA sequencing data i necessary to eliminate cell-specdific biases prior to downstrearn

analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a
novel approach where exprassion values are surmmed across pools of cells, and the summed values are used for
nermalization. Pookbased size factors are then deconvelved to yield cell-based factors. Qurdeconvelution approach
outperforms existing methods for accurate normalization of celkspecific biases in simulated data. Similar behavior is
observed in real data, where deconvolution improves the relevance of results of downstrearn analyses.

Keywords: Single-cell RNA-seq, Normalization, Differential expression

Background

Single-cell RNA sequencing (scRNA-seq) is a powerful
technique that allows researchers to characterize the gene
expression profile of single cells. From each cell, mRNA
is isolated and reverse-transcribed into cDNA, which is
amplified and subjected to massively parallel sequenc-
ing [1]. The sequencing reads are mapped to a reference
genome, such that the number of reads mapped to each
gene can be used to quantify its expression. Alternatively,
transcript molecules can be counted directly using unique
molecular identifiers (UMIs) [2]. Count data can be ana-
lyzed to identify new cell subtypes and to detect highly
variable or differentially expressed (DE) genes between
cell subpopulations. This type of single-cell resolution is
not possible with bulk RNA sequencing of cellular pop-
ulations. However, the downside is that the counts often
contain high levels of technical noise with many dropouts,
i.e, zero or near-zerc values, This is due to the pres-
ence of low amounts of RNA per cell, which decreases
the efficiency with which transcripts can be captured
and processed prior to sequencing. Moreover, the capture
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efficiency often varies from cell to cell, such that counts
cannot be directly compared between cells.

Normalization of the scRNA-seq counts is a critical
step that corrects for cell-to-cell differences in capture
efficiency, sequencing depth, and other technical con-
founders. This ensures that downstream comparisons of
relative expression between cells are valid. Two broad
classes of methods for scaling normalization are available:
those using spike-in RNA sets and those using the counts
from the profiled cellular RNA. In the former, the same
quantity of spike-in RNA is added to each cell prior to
library preparation [1]. Any difference in the coverage of
the spike-in transcripts must be caused by differences in
capture efficiency, amplification bias, or sequencing depth
between cells. Normalization is then performed by scaling
the counts to equalize spike-in coverage between cells, For
the methods using cellular counts, the assumption is that
most genes are not DE across the sampled cells. Counts
are scaled so thatthere is, on average, no fold-difference in
expression between cells for the majority of genes. This is
the underlying concept of commonly used methods such
as DESeq [3] and trimmed mean of M values (TMM) nor-
malization [4]. An even simpler approach involves scaling
the counts to remove differences in library sizes between
cells, i.e, library size normalization.

The type of normalization that can be used depends on
the characteristics of the data set. In some cases, spike-in
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of an arbitrary set of cells 5. Define Vit as the sum of Zy;
across all cells in 8§, which has an expectation of
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The observed values of Vj; across all genes constitute an
overall expression profile for the pool of cells correspond-

ing to S¢. Also define LI; as the mean of Zy across all N
cells in the entire data set, which has an expectation of
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where &y refers to the set of all cells in the data
set. The observed values of L across all genes rep-
resent the expression profile for an averaged reference
pseudo-cell.

The cell pool £ is then normalized against this reference
pseudo-cell. Define Ry, asthe ratio of Vi to L) forthe non-
DE gene i The expectation of R represents the true size
factor for the pooled cells in S, and is written as
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Benchmarking: Deconvolution Method Performs Best
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DECONVOLUTION
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For other data sets it might not look as good as for ILC!
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How does deconvolution normalization method
compare with RPKM and normalizations
by using spike-ins?
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Cell Cycle Phase Assignment

Pre-trained classifier looks at pairs of genes having difference in expression
that changes sign from phase to phase of cell cycle
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Methods for Testing for Differential
Expression without Normalization:

SCDE, ROTS



Single-Cell Differential Expression (SCDE)

@ 2014 Nature America, Inc. All rights reserved.
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Bayesian approach to
single-cell differential
expression analysis

Peter V Kharchenko!-3, Lev Silberstein®-% &
David T Scadden®>

Single-cell data provide a means to dissect the composition
of complex tissues and specialized cellular environments.
However, the analysis of such measurements is complicated
by high levels of technical noise and intrinsic biological
variability. We describe a probabilistic model of expression-
magnitude distortions typical of single-cell RNA-sequencing
measurements, which enables detection of differential
expression signatures and identification of subpopulations of
cells in a way that is more tolerant of noise.

Methodological advances are making it possible to examine tran-
scription in individual cellson alarge scalel-4, facilitating unbiased
analysis of cellular states”*. However, profiling the low amounts
of mRNA within individual cells typically requires amplification
by morethan 1 million fold, which leads to severe nonlinear distor-
tions of relative transcript abundance and ac lation of nonsp
cific byproducts. A low starting amount also makes it more likely
that a transcript will be ‘missed’ during the reverse-transcription
step and consequently not detected during sequencing. This
leads to so-called ‘dropout’ events, in which a gene is observed at
amoderate or high expression level in one cellbut is not detected
in another cell (Fig. 1a). More fundamentally, gene expression is
inherently stochastic, and some cell -to-cell variability will be an
unavoidable consequence of transcriptional bursts of individual
genes or coordinated fluctuations of multigene networks®, Such
biological variability is of high interest, and several methods have
been proposed for detecting it'*!2 Collectively, this multifactorial
variability in single-cell measurements substantially increases the
apparent level of noise, posing challenges for differential expres-
sion and other downstream analyses.

Comparisons of RNA-seq data from individual cells tend to
show higher variability than is typically observed in biclogical
replicates of bulk RNA-seq measurements. In addition to strong
overdispersion, there are high- magnitude outliers as well asdropout
events (Fig. 1a). Such variability is poorly accommodated by

standard RNA-seq analysis methods'*, and the reported sets
of top differentiall y expressed genes can include high-magnitude
outliers or dropout events, showing poor consistency within each
cell population (Fig. 1b). The abundance of dropout events has
been previously noted in single-cell quantitative PCR data and
accommodated with zero-inflated distributions®.

Two prominent characteristics of dropout events make them
informative in further analysis of expression state. First, the overall
dropout rates are consistently higher in some single-cell samples
than in others (Supplementary Figs. 1 and 2), indicating that the
contribution of an individual sample to the downstream cumula-
tive analysis should be weighted accordingly. Second, the dropout
rate for a given cell depends on the average expression magnitude
of a gene in a population, with dropouts being more frequent for
genes with lower expression magnitude. Quantification of such
dependency provides evidence about the true expression mag-
nitude. For instance, dropout of a gene observed at very high
expression magnitudein other cells is more likely to be indicative
of true expression differences than of stochastic variability.

‘We modeled the measurement of each cell as a mixture of two
probabilistic processes—one in which the transcript is amplified
and detected at a level correlating with its abundance and the other
in which a transcript fails to amplify or is not detected for other
reasons. We modeled the first, ‘correlated’ component with a nega-
tive binomial distribution’®-!8, The RN A-seq signal associated with
the second, dropout component could in principle be modeled
as a constant zero (ie., zero-inflated negative binomial process);
however, we used a low-magnitude Poisson process to account for
some background signal that is typically detected for the dropout
and transcriptionally silent genes. Importantly, the mixing ratio
between the correlated and dropout processes depends on the
magnitude of gene expression in a given cell population. We ana-
lyzed two single-cell data sets—a 92-cell set consisting of mouse
embryonic fibroblast (MEF) and embryonic stem (ES) cells? and
adata set of cells from different stages of early mouse embryosi2,
To fit the parameters of an error model for a particular single -cell
measurement, we used a subset of genes for which an expected
expression magnitude within the cell population can be reliably
estimated. Briefly, we analyzed pairs of all other single-cell samples
from the same subpopulation (for example, all MEF cells except
for the one being fit) with a similarly structured three-com ponent
mixture containing one correlated component and dropout com-
ponents for each cell (Fig. 1c and Supplementary Figs. 1 and 2).
‘We deemed a subset of genes appearing in correlated components
in a sufficiently large fraction of pairwise cell comparisons to be
reliable. We estimated the expected expression magnitude of these

'Center for Blomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA. *Hematology/Oncelogy Program, Childrenis Hospital, Boston,
Massachusetts, USA. *Harvard Stem Cell Institute, Cambridge, Massachusetts, USA_ Center for Regenerstive Me dicine, Massachusetts General Hospital, Boston,
Massachusetts, USA. *Department of Stem Celland Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA. Correspondence should be addressed

to BV (peterkharchenko@post harvard edu).
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Single-Cell Differential Expression (SCDE) Method
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Benchmarking on mice embryonic stem cells: SCDE and ROTS
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Benchmarking on mice and human cells: SCDE and ROTS
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